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Abstract 
 

The following thesis presents a computer and mathematical model of the 

dynamics of the tethered subsystem of the Arecibo Radio Telescope.  

 

The computer and mathematical model for this part of the Arecibo Radio 

Telescope involves the study of the dynamic equations governing the motion of the 

system.  It is developed in its various components; the cables, towers, and platform are 

each modeled in succession.  The cable, wind, and numerical integration models stem 

from an earlier version of a dynamics model created for a different radio telescope; the 

Large Adaptive Reflector (LAR) system. 

 

The study begins by converting the cable model of the LAR system to the 

configuration required for the Arecibo Radio Telescope.  The cable model uses a lumped 

mass approach in which the cables are discretized into a number of cable elements.  The 

tower motion is modeled by evaluating the combined effective stiffness of the towers and 

their supporting backstay cables.  A drag model of the triangular truss platform is then 

introduced and the rotational equations of motion of the platform as a rigid body are 

considered.  The translational and rotational governing equations of motion, once 

developed, present a set of coupled non-linear differential equations of motion which are 

integrated numerically using a fourth-order Runge-Kutta integration scheme.  In this 

manner, the motion of the system is observed over time.   

 

 

A set of performance metrics of the Arecibo Radio Telescope is defined and these 

metrics are evaluated under a variety of wind speeds, directions, and turbulent conditions.  

The general configurations of the Arecibo Radio Telescope, before and after its two 

major upgrades, are also compared.   
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Finally, a sensitivity analysis is carried out in order to identify which physical 

parameters of the system, if changed or redesigned, could improve the system’s 

performance.  The following six parameters are investigated: number of mainstay cables, 

tower radius (cable length), effective tower stiffness (number of backstay cables), 

platform mass, cable-platform attachment points, and mainstay cable properties.   



 iii

Acknowledgements 
 
 

I would like to sincerely thank Professor Meyer Nahon, my supervisor and mentor 

throughout this thesis. I would like to thank him for his excellent guidance and advice, as 

well as for his patience, motivation, and resolve.  For always giving me the time of day, 

and for accepting to supervise my project, I am in his debt.  

 

I would also like to extend my thanks to Dr. Steve Torchinsky, the Head of 

Astronomy at the Arecibo Observatory, for providing invaluable information needed 

throughout the course of this project. 



 iv

Contents 

 

Abstract i 

Acknowledgments iii 

List of Figures vii 

List of Tables x 

 

Chapter 1 Introduction 1 

1.1 Radio Telescopes ……………………………………………….…… 1 

1.2 Radio Telescope Simulations……..………………………………….. 2 

1.3 Arecibo Construction Overview……………………………………... 3 

1.4 Arecibo Upgrades.…..……………………………………………….. 5 

1.5 LAR Model and Previous Work……………………………………... 7 

1.6 Scope of Thesis………………………………………………………. 9 

Chapter 2 The Arecibo Model  11 

 2.1  Overview……………………………………………………………... 11 

 2.2  Lumped Mass Approach……………………………………………... 12 

2.3 Simulation Basics……………………………………………………. 14 

2.3.1 State Vector……………………..………………………….. 14 

2.3.2. Numerical Approach……………………………………….. 16 

Chapter 3  Cable Model 19 

 3.1  Cable Properties..…………………………………………………….. 19 

 3.2  Coordinate Systems….………………………………………….…… 20 

 3.3  Cable Kinematics…………………………………………………….. 21 

 3.4  Cable Dynamics……………………………………………………… 22 



 v

   3.4.1 Internal Forces……………………………………………... 22 

   3.4.2 External Forces…………………………………………….. 26 

   3.4.3 Translational Equations of Motion………………………… 27 

Chapter 4  Tower Model 29 

 4.1  Construction Details………………………………………………….. 29 

 4.2  Tower Properties……………………………………………………... 31 

 4.3  Effective Stiffness……………………………………………………. 32 

   4.3.1 Tower Contribution………………………………………… 33 

   4.3.2 Backstay Cable Contribution………………………………. 34 

   4.3.3 Combined Effective Stiffness……………………………… 36 

   4.3.4 Tower-Top Motion…………………………………………. 36 

Chapter 5  Platform Model 40 

 5.1  Construction Details………………………………………………….. 40 

 5.2  Coordinate Systems………………………………………………….. 41 

 5.3  Platform Properties…………………………………………………... 42 

 5.4  Cable Attachment Points…………………………………………….. 45 

 5.5  Platform Drag………………………………………………………… 46 

   5.5.1 Factors Affecting Drag..…………………………………… 47 

   5.5.2 Side View of Truss……………...…………………………..48 

   5.5.3 Top View of Truss…………………………………………. 51 

   5.5.4 Platform Angle of Attack…………..………………………. 54 

   5.5.5 Drag of Gregorian System..………………………………... 57 

5.6 Translational Motion……………………………………………….… 59 

5.7 Rotational Motion……………………………………………………. 60 

5.7.1 The Z-Y-X Euler Angles…………………………………... 61 

5.7.2 Transformations……………………………………………. 62 

5.7.3 Rotational Equations of Motion……………………………. 65 

 



 vi

Chapter 6 Performance Evaluation 68 

 6.1  Introduction…………………………………………………………... 68 

 6.2  Performance Metrics…………………………………………………. 68 

 6.3  Additional Parameters of Interest……………………………………. 72 

 6.4  Indicators…………………………………………………………….. 72 

 6.5  Arecibo Model Configuration………………………………………... 73 

 6.6  Equilibrium Condition……………………………………………….. 74 

 6.7  Dynamic Runs……………………………………………………….. 76 

   6.7.1 Effect of Wind Speed………………………………………. 77 

   6.7.2 Effect of Wind Direction…………………………………... 81 

   6.7.3 Effect of Turbulence……………………………………….. 83 

 6.8  Upgraded Arecibo Configuration...………………………………….. 86 

 6.9  Selected Cases……………………………………………………….. 89 

Chapter 7 Sensitivity Analysis 95 

 7.1  Test Matrix…………………………………………………………… 96 

 7.2  Number of Mainstay Cables…………………………………………. 97 

 7.3  Tower Radius………………………………………………………… 99 

 7.4  Effective Tower Stiffness……………………………………………. 100 

 7.5  Platform Mass……………………………………………………….. 102 

 7.6  Cable-Platform Attachment Points…………………………………... 105 

 7.7  Mainstay Cable Properties: Plasma Rope……………………………. 107 

 7.8  Summary……………………………………………………………... 111 

 

Chapter 8 Conclusion 112 

 8.1  Final Remarks………………………………………………………... 112 

 8.2  Future Recommendations……………………………………………. 113 

 

References    115 

 



 vii

List of Figures 
 

1.1 Single-Dish Radio Telescopes Located Around the World………………….. 2 

1.2 The Arecibo Radio Telescope……………………………………………….. 4 

1.3 Tower Base and the Welcome Center ………………………….…………….4 

1.4 The LAR and the Arecibo Radio Telescope…………………………………. 8 

 

2.1 The Lumped Mass Approach in the LAR and the Arecibo.…………….…… 13 

2.2 Node and Element Numbering Scheme……………………………………… 13 

2.3 Flowchart of Simulation Overview…………………………………………... 18 

 

3.1 Body-Fixed Coordinate System for a Cable Element………………………... 20 

3.2 Unstretched Length Configuration……………………………………………23 

3.3 Schematic Representation of the Internal Forces…………………………….. 25 

3.4 Nodal Force Body Diagram………………………………………………….. 28 

 

4.1 Tower and Backstay Cable Configurations………………………………….. 30 

4.2 Tower Cross Section…………………………………………………………. 31 

4.3 View of Tower-Top, Mainstay and Backstay Cables………………………... 33 

4.4 Effective Tower Stiffness Model…………………………………………….. 33 

4.5 Geometry of the Perturbation Approach……………………………………... 35 

4.6 Tower Orientation in the Inertial Frame of Reference……………………….. 37 

 

5.1 A Picture of the Arecibo Platform…………………………………………… 41 

5.2 The Platform Model’s Body-Fixed Coordinate System……………………... 42 

5.3 Cable-Platform Attachment Points…………………………………………... 45 

5.4 Flat Plate Normal to the Flow………………………………………………... 46 

5.5 Drag Component Breakdown…………………………………………………48 

5.6 Truss Pair Correction Factors………………………………………………... 50 

5.7 Finite to Infinite Aspect Ratio Correction Factors…………………………… 51 

5.8 Plan View Photograph of the Arecibo Platform……………………………... 52 



 viii

5.9 Correction Factors for Adjacent Truss Frames Used for the Top View of the 

Platform………………………………………………………………………. 53 

5.10 Angle of Attack………………………………………………………………. 55 

5.11 Platform Cd*A versus Angle of Attack……………………………………… 57 

5.12 Flow Around Sphere for Low Reynolds Number & High Reynolds Number.. 58 

5.13 Using the Z-Y-X Euler Angle Set……………………………………………. 61 

5.14 Angular Velocities in the Platform’s Body-Fixed Frame……………………. 62 

5.15 Dynamics Model Flowchart………………………………………………….. 67 

 

6.1 The Focal Plane and Hemisphere……………………………………...…….. 69 

6.2 Tilt Angle Performance Metric…………………………………………..….. 70 

6.3 Performance Metrics to Equilibrium…………………………………………. 75 

6.4 Tower-Top Positions to Equilibrium………………………………………… 76 

6.5 Wind Direction and Tower Numbering……………………………………… 77 

6.6 (a) Error in the Focal Plane vs Wind Speed………………………………..… 79 

6.6 (b) Error Out of the Focal Plane vs Wind Speed…………………………….. 79 

6.6 (c) Platform Tilt Angle vs Wind Speed……………………………………… 80 

6.7 (a) Error In the Focal Plane vs Wind Direction……………………………… 81 

6.7 (b) Error Out of the Focal Plane vs Wind Direction…………………………. 81 

6.7 (c) Platform Tilt Angle vs Wind Direction…………………………………... 81 

6.7 (d) Average Cable Tension vs Wind Direction………………………………. 82 

6.7 (e) Average Tower Deflection vs Wind Direction…………………………… 83 

6.8 (a) Error in the Focal Plane vs Turbulent Mean Wind Speed………………... 84 

6.8 (b) Error out of the Focal Plane vs Turbulent Mean Wind Speed…………… 84 

6.8 (c) Platform Tilt Angle vs Turbulent Mean Wind Speed……………………. 85 

6.9 Average Error in the Focal Plane vs Wind Speed……………………………. 88 

6.10 Average Platform Tilt Angle vs Wind Speed………………………………... 88 

6.11 Case A Performance Metrics………………………………………………… 90 

6.12 Case A Platform Rotation……………………………………………………. 91 

6.13 Case A Platform Translation…………………………………………………. 91 

6.14 Case B Performance Metrics…………………………………………………. 92 



 ix

6.15 Case B Platform Rotation……………………………………………………. 93 

6.16 Case B Platform Translation…………………………………………………. 93 

6.17 Case B: Tower-Top Motion………………………………………………….. 94 

 

7.1 Equilibrium Platform Height vs No. of Mainstay Cables……………………. 97 

7.2 Equilibrium Tensions per Cable vs Number of Cables………………………. 98 

7.3 Error in the Focal Plane vs Tower Radius…………………………………… 99 

7.4 (a) Error in the Focal Plane vs Number of Backstay Cables...………………. 101 

7.4 (b) Platform Tilt Angle vs Number of Backstay Cables……………………... 101 

7.4 (c) Average Tower Deflection vs Number of Backstay Cables……………… 102 

7.5 Equilibrium Platform Height vs Platform Mass………………………………103 

7.6 Platform Tilt Angle vs Platform Mass……………………………………….. 104 

7.7 Cable-Platform Attachment Points…………………………………………... 105 

7.8 Error in the Focal Plane vs Platform-Cable Attachment Radius…………….. 106 

7.9 Platform Tilt Angle vs Platform-Cable Attachment Radius…………………. 107 

7.10 (a) Average Error in the Focal Plane vs. Wind Speed for Plasma Rope……... 109 

7.10 (b) Average Error out the Focal Plane vs. Wind Speed for Plasma Rope…… 110 

7.10 (c) Tilt Angle vs. Wind Speed for Plasma Rope……………………………... 110 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

List of Tables 
 

1.1 Summary of Construction Details…………………………………………….6 

 

3.1 Mainstay Cable Properties…………………………………………………… 19 

 

4.1 Tower and Backstay Cable Configurations………………………………….. 30 

4.2 Tower Properties…………………………………………………………….. 32 

 

5.1 Physical Properties of Platform………………………………………………. 43 

5.2 Summary of Drag Parameters………………………………………………... 54 

 

6.1 The Original Arecibo Configuration…………………………………………. 73 

6.2  Wind Speed Test Matrix……………………………………………………... 78 

6.3 The Upgraded Arecibo Configuration……………………………………….. 86 

6.4 Upgraded Platform Mass Moment of Inertias………………………………... 87 

 

7.1 Test Matrix for the Sensitivity Analysis……………………………………... 96 

7.2 Mainstay Cable Effective Areas……………………………………………... 97 

7.3 Average Tower Effective Stiffness…………………………………………... 100 

7.4 Platform Mass-Moment of Inertia……………………………………………. 103 

7.5 Minimum Breaking Strength of Cables……………………………………… 104 

7.6 Plasma Rope Properties……………………………………………………… 108 

7.7 Qualitative Summary of Sensitivity Analysis……………………………….. 111 

 

 
 

 

 

 



 1

Chapter 1 – Introduction 

 

1.1 Radio Telescopes 

 

Radio telescopes are used to detect and image electromagnetic radiation in the 

radio wave range.  They generally consist of some components that collect the radiation 

and a receiver to detect the radiation [1].  Radio telescopes are used by radio astronomers 

to study our planet’s atmosphere as well as asteroids and even distant galaxies [2].  A 

radio telescope has the difficult task of collecting and detecting very weak radio wave 

signals and hence, bigger is better when it comes to the collecting area of the telescope 

[1].  Some examples of the various shapes and sizes of radio telescopes from around the 

world are shown in Figure 1.1.  In order to be of practical use in detecting the 

electromagnetic radiation from celestial bodies, a radio telescope’s receiver must be very 

accurately held in position and orientation.   

 

Located on the island of Puerto Rico, the Arecibo Radio Telescope (commonly 

called the “Arecibo Observatory” and often refereed to herein as simply “Arecibo”) is the 

largest single-dish radio telescope in the world [3].       
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Figure 1.1 – Single-Dish Radio Telescopes Located Around the World. 

A) 100 m Effelsberg in Germany B) 64 m Parkes in Australia 

C)100 m Green Bank in U.S.A. D) 305 m Arecibo in Puerto Rico 

 

1.2 Radio Telescope Simulations 

 

When a new radio telescope is to be designed and constructed in this day in age, 

the structural and mechanical design process often calls on computer models and 

dynamic simulations; a cost-efficient and convenient tool.  With the advance of computer 

models, it is of particular interest to model a design already in use, namely the Arecibo 

Radio Telescope.  The Arecibo Radio Telescope was designed and constructed in the 

early 1960’s [4] and with no use of dynamic simulation whatsoever.  In developing a 

computer simulation, the system’s behavior and performance may be observed over time, 

under various wind and turbulence conditions, without the expense and complications of 

experimental work.  A sensitivity analysis may also be carried out in order to identify the 

parameters that may improve or deteriorate the system’s performance, and all of this done 

on a personal computer workstation. 
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1.3 Arecibo Construction Overview 

 

The Arecibo Radio Telescope was conceived by William E. Gordon who at the 

time was a professor at Cornell University [5].  The original Arecibo configuration 

became operational in November of 1963 [5].  Since that time the telescope has seen two 

major upgrades (one in 1974 and the other in 1997), which will be described in the next 

section.  Figure 1.2 shows a photograph of the Arecibo Radio Telescope next to a close 

up of one the supporting towers.  To observe the enormity of the structure notice, in 

Figure 1.3, the doorway entrance to the Welcome Center that is found at the base of one 

of the towers. 

 

Arecibo’s structural configuration consists of a 305 m diameter reflector dish; of 

spherical shape, with a radius of curvature of 265 m [2]. The spherical reflector always 

points straight up and unlike many other radio telescopes; it cannot be steered to a 

different direction.  A natural bowl in the landscape of the region was found to aid in the 

construction effort of the enormous mesh surface dish.   

 

The telescope’s triangular feed support structure (referred to herein as the 

“platform”) is suspended approximately 150 m above the surface of the reflector [5].  In 

the original configuration, the triangular platform had a mass of 550 tons, and was 

suspended by 12 main cables (each of 3 inch diameter - braided steel) from 3 towers.   

The 3 towers, whose tops are all of equal elevation, are positioned at a radial distance of 

213 m from the center of the receiver.  Due to the region’s landscape, two of the three 

towers are of an equal length, 76.2 m, with the third having a length of 111.2 m.  

Supporting each tower, 5 backstay cables (each of 3.5 inch diameter - braided steel) run 

from the tower tops to concrete anchorages in the ground. Running from each corner of 

the platform are two 1.5 inch cables called tie downs (functioning as catenaries) which 

are anchored to the ground just along the rim of the reflector [5]. 
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Figure 1.2 – The Arecibo Radio Telescope 

 

 
Figure 1.3 – Tower Base and the Welcome Center 
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1.4 Arecibo Upgrades 

The Arecibo Radio Telescope has undergone two major upgrades since it was first 

constructed.  The first upgrade, completed in 1974, was carried out to improve the 

smoothness of the reflecting surface to an accuracy of 2.5 mm r.m.s [2].  Upgrades at that 

time also included “the addition of a powerful transmitter at 2380 MHz designed for 

radar studies of the solar system.” [2]. 

 

The second Arecibo upgrade, completed in 1997, was the implementation of the 

new Gregorian system (receiver/transmitter), whose weight and additional structure 

increased the total mass of the platform form 550,000 kg to 815,000 kg. [2].  To support 

this much heavier platform, using the same three towers, additions to the number of 

cables were made: 6 auxiliary mainstay cables (each of 4
13  inch diameter) were added 

from the tower tops (2 per tower) to the platform and 6 auxiliary backstay cables (each of 

8
53  inch diameter) were added from the tower tops to the ground.  A new Gregorian 

system was installed on the triangular platform which brings rays from the spherical 

primary reflector to a point focus through a series of reflections [2].  The entire Gregorian 

enclosure is spherical in shape (as can be seen in Figure 1.2).   

 

Finally, to meet the new pointing requirements of the telescope beam, three new 

pairs of vertically-oriented tiedown cables [2] were added at each corner of the triangular 

platform, anchored to the ground below the reflector.  These new tiedown cables replaced 

the existing catenaries.  Each tiedown is anchored to controllable jacks which can provide 

active control (using computer models) to the tiedown by exerting up to a “60 tons of 

vertical force” cables [2]. Table 1.1 summarizes and compares some of the important 

construction details of the Arecibo Radio Telescope.  Throughout this work the “original” 

Arecibo will refer the state of the Arecibo upon initial construction and the “upgraded” 

Arecibo will refer the state of the Arecibo as it is found today (after both major 

upgrades). 
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 Construction of  
the Original Arecibo 

Construction of the  
Upgraded Arecibo 

platform mass 550 000 kg 815 000 kg 
receiver drag Line Feeds Gregorian System 

Mainstay Cables 4 cables per tower 
d = 3" 

4 cables per tower 
d = 3" 

Backstay Cables 5 cables per tower 
d = 3.25" 

5 cables per tower 
d = 3.25" 

Main Auxiliary 
Cables N/A 

2 cables per tower 
d = 3.25" 

Attached 2/3 of the way along the sides of 
the triangular truss 

Backstay Auxiliary 
Cables N/A 2 cables per tower 

d = 3.625" 

Tie Down Cables  

6 cables total 
d=1.5" 

Two off-vertical cables (functioning 
as catenaries) run from each corner 
of the platform and anchored to the 
ground near the rim of the reflector  

6 cables total 
d = 1.5" 

Two cables run vertically from each corner 
of the platform and are anchored directly 

below the dish.  Active Control Jacks which 
can exert up to 60 tons of vertical force.   

Table 1.1 - Summary of Construction Details 
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1.5 LAR Model and Previous Work 
 

The Arecibo dynamics model stems from an earlier version of a model created for 

the proposed “Large Adaptive Reflector (LAR)” [6]. The LAR dynamics model, 

developed by Dr. Meyer Nahon, includes the entire cable and wind models as well as the 

numerical integration scheme (all developed in C++).  The following is a brief 

description of the LAR system and its various differences with the Arecibo Radio 

Telescope.  

 

The particular version of the LAR model used in the conversion includes the 

following physical components: 3 plasma rope tethers, a payload (the telescope’s 

receiver), a leash, and a lifting aerostat (balloon).  The aerostat’s buoyancy provides 

enough lifting force (approximately 40 kN) [6] to keep the telescope’s receiver in its 

elevated position and hence the three tethers (which are anchored to the ground) in 

tension.  Figure 1.4 shows the LAR system (shown with 6 tethers) and its various 

components along side the Arecibo Radio Telescope. 
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Figure 1.4 – The LAR (above) and the Arecibo Radio Telescope (below). 

 

The basic differences between the two systems, among factors affecting the 

dynamics, are summarized as follows: 

 

(i) The LAR tether base points are at fixed locations (anchored to the ground), 

whereas the high tower tops of the Arecibo cannot be assumed stationary, and 

in fact may sway as the tensions in the cables change. 

(ii) The LAR design calls for lightweight materials in order to minimize the 

buoyancy requirements of the aerostat.  On the other hand, the Arecibo 

platform was originally constructed having a mass of 550 tons. 

(iii) The large platform - a triangular truss structure to which Arecibo’s cables are 

attached - is to be considered a rigid body subject to the rotational equations 
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of motion.  On the contrary, in the version of the LAR model used here, the 

LAR payload and aerostat are both considered subject to translational motion 

only. 

(iv) In the version of the LAR model used here, the LAR payload and aerostat are 

both considered spherical for the purposes of their drag models.  A new drag 

model for Arecibo’s large triangular truss platform is required. 

 

1.6 Scope of Thesis 

 

In the context of this undergraduate honours thesis, a basic model for the 

dynamics of the tethered subsystem of the Arecibo Radio Telescope is first developed.  

The computer model of this subsystem is then subjected to a performance evaluation and 

a sensitivity analysis.  In Chapters 2 to 5 the dynamics model is described in detail.  We 

begin the model description with an overview and introduction to the modeling 

techniques and the simulation basics.  In Chapter 3, the cable properties, kinematics and 

dynamics model are discussed.  Chapter 4 deals with the tower model, construction 

details, properties, effective tower stiffness, and tower-top motion.  Finally, in Chapter 5 

the platform model is described which includes the platform drag model and the 

rotational equations of motion.  

 

In Chapter 6, the various performance metrics of the Arecibo system are defined, 

and the motion and performance of the “original” Arecibo system are observed and 

evaluated under a variety of wind conditions (specifically wind speed, wind direction, 

and turbulence).  Also in Chapter 6 is a general comparison between the “original” and 

“upgraded” configurations of the Arecibo Radio Telescope.  In Chapter 7, a sensitivity 

analysis is carried out on the “original” Arecibo configuration.  The sensitivity analysis 

involves changing the system’s configuration one parameter at a time.  Six different 

physical parameters are discussed, including: the number of mainstay cables, the tower 

radius, the effective tower stiffness, the platform mass, the cable-platform attachment 

points, and the mainstay cable properties. In closing, Chapter 8 contains the final remarks 
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and conclusions, as well as the recommendations for future work and development of the 

Arecibo model.  

 

The modeled configurations of the Arecibo radio telescope are simplified in that 

they do not include the tiedown cables (neither the off-vertical catenaries in the original 

configuration nor the vertically oriented cables in the upgraded configuration).  A large 

effort was indeed made to incorporate the tiedown cables into the model, and although 

we were close, it was decided that the tiedowns were beyond the scope of this thesis and 

consequently they have been left to future work.  
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Chapter 2 – The Arecibo Model 
 

2.1 Overview 

 

A dynamics model of the Arecibo Radio Telescope has been developed in Visual 

Studio C++.  The model is described in several sections, which come together to form the 

3-dimensional non-linear dynamics simulation.  The Arecibo model will be presented in 

the following sections:  

 

(i) Lumped Mass Approach 

(ii) Simulation Basics 

(iii) Cable Model (Chapter 3) 

(iv) Tower Model (Chapter 4) 

(v) Platform Model (Chapter 5) 

 

To make the development of the Arecibo dynamics model tractable requires the 

use of certain assumptions and approximations.  The kinematics and dynamics of 

Arecibo’s physical components (which include the cables, the towers, and the platform) 

will be described in detail with attention drawn to the various assumptions and 

approximations.  In terms of the overall dynamics of the system; the development of the 

translational equations of motion is governed by Newton’s second Law, amF
rr

= ; while 

the development of the rotational equations of motion follow Euler’s equations, 

ωωω rrrr
&

rr
IIM ×+= .   
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2.2 Lumped Mass Approach 

 

The kinematics and dynamics of the Arecibo Radio Telescope are modeled using 

the same approach as that of the LAR system; the so-called “lumped-mass approach”.  

This model has been validated for the LAR tethered aerostat system, as well as a number 

of underwater applications [6]. The basic principle is to divide the total unstretched 

length of the cables into a number of discrete cable elements, forming a set of nodes 

bounding each element.  The mass of each cable element is then lumped into its end 

nodes, which are in turn treated as point masses.  Further details of how we use the 

lumped mass approach in developing the governing equations of motion are discussed 

throughout this section.  For now it suffices to become comfortable with the geometry 

and methodology used in the numbering of the nodes and cable elements. Figure 2.1 

shows the geometry of the lumped mass approach as used in both the LAR and Arecibo 

models. 

 

The numbering system for the nodes and the cable elements is very important to 

the organization within the code of the dynamics model.  Figure 2.2 shows the numbering 

system for the Arecibo model as used in the performance evaluation, that is, with 5 nodes 

used for each of the 3 cables (Section 3.1 will rationalize the use of only 3 cables).  

Notice that the tower-top positions are in fact not considered to be nodes, in that they are 

not included in the node numbering system.  The equations governing the motion of the 

tower-tops are determined separately from the other nodes and are discussed in detail in 

the tower model (Chapter 4).  Also notice the very important shared confluence point, 

which is actually the center of mass of the Arecibo platform.  In terms of the numbering 

system, the confluence point is considered to be the last node (#15).  However, also 

sharing this location are the nodes #5 and 10.  With the number of nodes per cable chosen 

as 5 here, the number of discrete cable elements is 5 per cable with numbering as shown 

in Figure 2.2. 
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Figure 2.1 – The Lumped Mass Approach in the LAR (left) and the Arecibo (right) 
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Figure 2.2 – Node and Element Numbering Scheme 

2.3 Simulation Basics 

 

Our goal is to develop a model capable of simulating the motion of the Arecibo 

system over a given period of time while under particular wind and turbulence 

conditions.  The dynamics model of the Arecibo Radio Telescope has been reduced – 

through the lumped mass approach – to the dynamics of a finite number of point masses, 

subject to translational motion, and a rigid body platform, subject also to rotational 

motion.  We begin by defining the state vector for the system and then present an 

overview of the numerical approach to solving the resulting non-linear, second order, 

differential equations of motion.  The basics of the simulation are being presented early 

on, so that we may have a clear understanding of the overall modeling process involved. 

 

2.3.1 The State Vector 

 
The state of the Arecibo system may be completely defined at any time by the 

position and the velocity of its “n” nodes, in addition to the orientation and angular 

velocity if its platform.  We define the first 6n elements of the state vector as follows [7]:  
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Where )(tx  gives the position of the nodes and 
dt

tdt )()( xx =& gives the velocity of the 

nodes.  The very last 6 elements of the state vector define the platform’s orientation and 

angular velocity in the inertial frame:  
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Where Ψ,,θφ form the Z-Y-X Euler angle set which will be described in more detail in 

the platform model description (Chapter 5). 

 

The length of the state vector depends on the number of individual nodes that 

must be described.   We must be careful to subtract the nodes which are shared at the 

platform’s centre of mass (recall Figure 2.2).  We must also add the 6 rotational state 

variables required to describe the rotational motion of the platform.  The total length of 

the state vector array is thus given by: 

5# == cablepernodesofnodes  

3=cables  
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=
+−−⋅⋅=

+−−⋅⋅= cablescablesnodeslength X
  (2.3) 
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2.3.2 Numerical Approach 

 

The non-linear, second order differential equations of motion that result from the 

analysis in Chapter 3, are integrated numerically in order to observe the state of the 

Arecibo system over time.  Any second order differential equation may be reduced to a 

system of first order differential equations by introducing a new variable [8].  The new 

variable in our case is the velocity. We then have a set of coupled first order differential 

equations that may be written in their most general form as follows [8]: 

 

 

 
dt

tdt i
i

)()( xv =   (2.4) 

 ),,()( vxv tf
dt

td
i

i =   (2.5) 

 

 

In order to implement a numerical integration scheme, we must know the initial 

values of the state vector at some time to, and also the functions on the right hand side of 

Equation 2.5.  The Arecibo model uses a fourth order Runge-Kutta integration scheme, 

which was already implemented in the LAR dynamics model by Nahon [6].  The Runge-

Kutta scheme requires the following as input: the start and stop times (to and tf), the initial 

state vector X  and derivative of the state vector X&  at time to, and the time step t∆ .  The 

integration scheme will then return the state vector values for each time step until tf.  In a 

step-wise manner, we can observe the state of the Arecibo system over time.  Figure 2.3 

shows a flow chart of the overall process by which the simulation runs. 
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The remaining sections describing the Arecibo model (Chapters 3 to 5) will focus 

primarily on how to determine the functions on the right hand side of the general 

Equation 2.5.  In other words, we must evaluate the kinematics and dynamics of the 

system to develop the governing equations of motion that will determine the accelerations 

of the system (which will be used as input to the Runge-Kutta integration scheme).     
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Figure 2.3 – Flowchart of Simulation Overview 
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Chapter 3 – Cable Model 
 

As discussed in Section 2.2, the lumped mass approach is used to model the 

Arecibo cable dynamics.  The cable properties, coordinate systems, kinematics and 

dynamics are all discussed in this section.  Much of what follows may be found in more 

detail in Nahon’s work on the LAR system [6].  The final results and equations from [6] 

are presented here in order to demonstrate the basics of the cable dynamics model and its 

use for the Arecibo Radio Telescope. 

 

3.1 Cable Properties 

 

The “original” Arecibo cable configuration consists of 12 braided steel cables, 

each of 3-inch diameters.  Each tower-top (considered the cable base points) has 4 of 

these closely spaced cables running toward the near corners of the triangular platform.  

These 4 mainstay cables are modeled together as one cable having an equivalent effective 

area given by: 

 
4

)( 2
cc

eff
dnA π=   (3.1) 

Where effA  is the effective area of the cable, cn  is number of actual mainstay cables per 

tower and cd is the diameter of each actual mainstay cable.  Hence the system is 

immediately simplified to one in which only 3 main cables are supported by the 3 towers.  

Other cable properties include the modulus of elasticity for braided steel cables.  This is 

taken to be half of the modulus of elasticity for steel, as is commonly used for braided 

cable construction [9].  The cable properties used in the Arecibo model are given in the 

Table 3.1. 

Mainstay Cable Properties 
Parameter Symbol Value Units 

Individual cable Diameters  dc 0.0762 m 
Density ρ 7850 kg/m3 
Elastic Modulus E 1.00E+02 GPa 

Table 3.1 - Mainstay Cable Properties 
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3.2 Coordinate Systems  

 
 

There are two different frames of reference used when describing the position of 

the cable nodes and the orientation of the cable elements.  The first is the inertial frame of 

reference, in which the orthogonal coordinate axes are considered to be fixed with respect 

to the Earth.  The origin is located at the bottom-centre of the collector dish (i.e. at an 

elevation equal to the lowermost point of the collector dish).  The Zi-axis points vertically 

toward the sky, while the Xi-axis points toward one of the three towers and the Yi-axis 

completes the coordinate system by the right-hand-rule.  The second frame of reference 

will be called the “body-fixed” frame which is fixed relative to each cable element.  The 

q-axis is tangential and in the direction of the cable element itself, while the p1 and p2-

axes complete the orthogonal coordinate system by forming a plane whose normal is a 

vector in the direction of the q-axis.  The body-fixed coordinate system is shown for a 

given cable element in Figure 3.1. 

 

 
Figure 3.1 – Body-Fixed Coordinate System for a Cable Element 
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3.3 Cable Kinematics 

 
 

The positions of the nodes are described using the inertial frame and the 

corresponding (x,y,z) coordinates.  The orientations of the elements are described using 

an Euler angle set.  Specifically, the Z-Y-X Euler angle set is used with the angles 

denoted by ),,( φθΨ .  For a more thorough explanation of the Z-Y-X Euler angle set, and 

how it is to be used, the reader is referred to the platform model description in Section 

5.7.1.   The rotation matrix that brings any vector from the body-fixed frame to the 

inertial frame is given by [6]. 
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The following equations [6] are used to calculate the Euler angles.  The 

superscript i and i-1 refer to the two nodes bounding the ith element: 
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The angle Ψ (a rotation about the Z-axis) is taken as zero since the torsion in the 

elements is neglected (as discussed in the next section). 
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3.4 Cable Dynamics 

 
The forces acting on the cable elements must be applied to the point masses located at 

the cable nodes. It is important to distinguish that although the forces are applied 

throughout the continuous cable, they are treated as acting only at the nodes. The various 

forces acting on the cable elements (but acting at the nodes) are: 

 

(i) Cable Tension 

(ii) Cable Damping 

(iii) Aerodynamic Drag 

(iv) Gravity 

  

The above forces are divided into the internal (tension and damping) and external 

(aerodynamic drag and gravity) forces acting on the cables.  The effect of the bending 

stiffness in the cables is much smaller in magnitude than the tensile stresses and axial 

stiffness [9] and is therefore neglected.  An important result of this, to the cable 

kinematics, is that the angle of rotation about the inertial Z-axis, Ψ , is always equal to 

zero [6]. 

 

3.4.1 Internal Forces 

 
The internal forces are those forces that are generated within the braided cables.  

The first force to consider is the tension.  Each individual cable element is treated as an 

elastic element [6] subject only to axial deformation.  To calculate the unstretched lengths 

of the elements, we consider the platform’s centre of mass to be at equal elevation as the 

tower tops, and take the distance from the ‘cable-platform’ attachment points to the 

‘cable-tower’ attachment points, as shown in Figure 3.2   



 23

 
Figure 3.2 – Unstretched Length Configuration 

 

The unstretched length of the entire cable is found to be: 

 
m

mm
radradl ptu

35.175
01.3836.213

=
−=

−=

 (3.6) 

With 5 elements per cable the unstretched length of each element is taken to be: 

 m
elementsofNo
ll ui

u 07.35
.

==   (3.7) 

 

At equilibrium the elevation of the platform’s centre of mass is approximately 35 

m below the tower tops.  The actual lengths of the cable elements, at a given instant, must 

now be determined in order to calculate the strain.  The length of the ith cable element is 

given by: 

 

 212121 )()()( −−− −+−+−= iiiiiii zzyyxxl   (3.8) 

 

Where zyx ,, are the components of the position vector rr which spans from the 

inertial origin to the given node.  The exceptions to the above length calculation are the 
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first or uppermost cable elements (#1, 6, 11) and the last or lowermost cable elements 

(#5, 10, 15).  The length calculations for the last elements are based on the second-last 

nodes (#4, 9, 14) and the cable-platform attachment points (see platform model Section 

5.4 for details).  The cable-platform attachment points are not explicitly considered 

nodes; however the inertial coordinates of these “fictitious nodes” are used to determine 

the lengths and Euler angles of the lowermost elements.  The length calculations for the 

uppermost elements are based on the tower-top locations and the first node locations.   

 

Once the lengths have been calculated, the axial tension forces in the cable 

elements may be found as [6]: 

 i
u

i
u

i
ii

eff
i

q l
llwhereEAT −== εε   (3.9) 

The exception to using Equation 3.9 directly is only in the first cable elements of 

each cable; the tower-top positions and the tension in elements (#1, 6, 11) depend 

implicitly on each other.  The equations for the tower-top motion and the first element 

tensions are explained and solved simultaneously in the Tower Model section. 

 

The second internal force to be considered is the damping generated in the cables.  

“The energy dissipation in the cables is due primarily to the friction generated in their 

braided construction” [6]. The viscous damping is considered proportional to the 

tangential velocity of one bounding node relative to the element’s other bounding node.  

The damping force is calculated as [6]: 

 )( 1−−= i
q

i
q

i
v

i
q vvCP   (3.10) 

 

Where i
qP is the damping force in the ith element, vC is the damping coefficient, and i

qv is 

the tangential velocity of the ith node.  The damping coefficient, as compared to the mass 

and the stiffness of a system, is generally a more difficult parameter to measure directly 

[10].  Taken from Nahon’s work, the damping coefficients used in the Arecibo cable 

elements are not considered constant, but rather depend on the tension force in each cable 

element: 
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Where T denotes the tension, g is the gravitational constant (taken as 2/81.9 sm ), and  

ξ is the damping ratio taken as 0.015 [11].  Figure 3.3 shows a schematic of the spring-

damper system in which the spring represents the cable stiffness and the dashpot is used 

to indicate the presence of the damping force [10]. 

 

 
Figure 3.3 – Schematic Representation of the Internal Forces [6]. 

 

Finally, a condition is imposed in the dynamics model that will always set the 

tension and damping forces equal to zero if or when the tension is calculated as negative.  

That is, if the cable element is physically slack then there will be no tension or damping 

forces in that cable element.  In reality the cable elements should never be slack, however 

in the simulation, as the system comes to a static equilibrium from its unstretched length 

configuration, slack cable elements may be found.  
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3.4.2 External Forces 

 

The external forces acting on the cable system are the aerodynamic drag and the 

Earth’s gravity [6].  First considering the gravitational forces, we calculate the weight 

acting in the negative inertial Z direction.  The lumped mass approach requires the 

calculation of the mass of each cable element: 

 

    i
csteel

i
c Vm ρ=  where: i

ueff
i

c lAV =   (3.12) 

 

Where i
cV is the volume of the cable element calculated based on the unstretched length 

of the element, i
ul . The gravitational force acting on the ith cable element is calculated 

using the gravitational constant as: 

 gmW i
c

i ⋅=   (3.13) 

Where iW and i
cm  refers to the weight and mass of the ith element respectively.  

However, it is important to note (as will be discussed later) that the gravitational force 

acts at the nodal points bounding each cable element.   

 

The aerodynamic drag acting on the cables is found as a function of the relative 

velocities of the cable element midpoints to that of the surrounding air.  The coefficient 

of drag for the cylindrical cable is taken as, 2.1=dcC  [6].  The drag force acting on the ith 

cable element is calculated as follows [6]: 
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Where the components are calculated as: 
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Where iv  (and its components i
q

i
p

i
p vvv ,, 21 ) refers to the velocity of the cable element’s 

midpoint relative to the surrounding air.  The pf  and qf  are the required loading 

functions that “account for the nonlinear breakup of drag between the normal and 

tangential directions”[6].  For a more rigorous description of the loading functions and 

the relative velocity calculations the reader is referred to [6]. 

 

3.4.3 Translational Equations of Motion 

 
We are now ready to set-up the translational equations of motion for the nodal 

point masses, which follow Newton’s second law; aF m= .  The approach is to apply the 

external and internal forces at the nodes.  In order to apply the drag and weight to the 

nodes, we must take only half of the drag and weight of the cable elements to the right, 

and similarly from the cable element to the left of the given node.   For example, the mass 

of the ith node is equal to half of the mass of the element to its right plus half of the mass 

of the element to its left.  The approach is more easily understood by observing the force 

body diagram of a given node as shown in Figure 3.4.  
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Figure 3.4 – Nodal Force Body Diagram 

 

The equations governing the motion of the cable nodes follow Newton’s second law, 

such that: 

 

 )(
2
1)(

2
1)()( 1111 gDgDPTPTr i

c
ii

c
iiiiiii mmM +++++−+= ++++&&   (3.18) 

 

Where iM is the mass of the ith node and ir&& is the acceleration vector of the ith node.  The 

following points should be noted regarding the governing equations of motion: 

 

(i) The tension, damping, and aerodynamic drag forces must be transformed into 

the inertial frame of reference. 

(ii) The governing equation is a vector equation which represents 3 equations in 

the inertial frame of reference 

(iii) The governing equation is a non-linear second order differential equation that 

must be solved using numerical techniques (as discussed in Section 2.3.2) 
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Chapter 4 – Tower Model 
 
 

The Arecibo Radio Telescope, being the largest single-dish radio telescope in the 

world, employs the distinct tower support structure.  In this section, the construction 

details of the towers are discussed and their properties determined.  In modeling the 

towers we first calculate their effective stiffness while keeping in mind that our final goal 

is to solve the equations of motion for the tower-tops (cable base points) to be 

implemented in the dynamics model.   

 

4.1 Construction Details 

 

 The three tall towers are each made of reinforced concrete with a cross-shaped 

cross-sectional area.  To keep the platform level, their tower-tops were designed to all be 

at the same elevation.  Due to the uneven landscape, two of the towers are 250 ft in height 

and the third is 365 ft in height [12].    The construction of the towers themselves was a 

tedious task, rising at a slow rate of less than 10 inches per hour [13].  It took about 16 

days of cement pouring to construct one of the two shorter towers [13].  To facilitate their 

construction, a concrete production plant was installed at the Arecibo construction site. 

 

 The original Arecibo construction includes 5 backstay cables running from the 

tower-tops to the ground where they are anchored to cement blocks.  The main purpose of 

the backstay cables is to support the towers (in bending) while carrying the heavy load of 

the platform.  The 5 backstay cables are each of diameter 3.25 inches.  The anchorage 

locations (both in radius and elevation) are unique to each tower; again due to the uneven 

landscape.  Figure 4.1 shows the general construction of the three towers with their 

backstay cables.  “The towers are labeled as T4, T8, and T12 following the numbers on 

the face of a watch, T12 being the one due north.” [13]. Table 4.1 gives the dimensions 

and angles of each tower-backstay configuration. 
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Figure 4.1 – Tower and Backstay Cable Configurations 

 

Tower Property Symbol Value Units 
Tower Height L 111.252 [m] 
Anchorage Radius a 118.872 [m] 
Backstay Cable Length b 58.3692 [m] 
Tower-Anchorage 
Elevation c 132.4293 [m] 

T8 

Backstay Cable Angle θ  26.1522 [deg] 
Tower Height L 76.2 [m] 
Anchorage Radius a 138.684 [m] 
Backstay Cable Length b 99.5172 [m] 
Tower-Anchorage 
Elevation c 170.6954 [m] 

T4 

Backstay Cable Angle θ  35.6626 [deg] 
Tower Height L 76.2 [m] 
Anchorage Radius a 115.824 [m] 
Backstay Cable Length b 83.058 [m] 
Tower-Anchorage 
Elevation c 142.5266 [m] 

T12 

Backstay Cable Angle θ  35.6445 [deg] 
 

Table 4.1 – Tower and Backstay Cable Configurations 



 31

4.2 Tower Properties 

 

 The tower cross-sectional dimensions are not constant throughout their lengths.  

In fact, the cross sectional area decreases from base to top both continuously and in 

clearly visible increments at particular heights.  The dimensions and geometry of the 

cross-section is required to determine the moment of inertia of the towers to be used in 

determining their stiffness in bending.  As an approximation, the tower cross-section is 

assumed to be constant based on dimensions that are available from the AutoCAD 

drawings of the Towers [14].  Figure 4.2 shows the geometry of the tower cross section.  

Table 4.2 gives the constant tower properties as used in the Arecibo model 

 

 
Figure 4.2 – Tower Cross Section 

 

 

For the given cross-sectional geometry (which is symmetric) the area moment of inertia 

is given by: [15] 

 

 
12

)( 33 BBHBHI −+=   (4.1) 
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Property Symbol Value Units 
Cross Sectional Dimension  H 2.74 [m] 
Cross Sectional Dimension  B 1.83 [m] 
Area Moment of Inertia I 2.64 [m4] 
Concrete Elastic Modulus E 25 [GPa] 
Tower Height (2) L 76.20 [m] 
Tower Height (1) L 111.25 [m] 

 

Table 4.2 – Tower Properties 

 

4.3 Effective Stiffness 

 

 

 Important to the cable and tower models is the fact that the 4 mainstay cables are 

completely different than the 5 backstay cables.   “The reason for the different number of 

cables and diameter is related to the different angles at which the cables carry the loads” 

[13].  Figure 4.3 shows a photograph of one of the three tower-tops as seen from ground 

level.  Notice the 5 backstay cables running to the right, the 4 mainstay cables to the left, 

as well as the main and backstay auxiliary cables installed during the second Arecibo 

upgrade.  Since the mainstay cables are terminated at the tower-tops we may model the 

combined effect of both the tower itself and the backstay cables as one.  For the purpose 

of modeling the system, the tower and backstay cables are replaced by a single-degree-of-

freedom spring with an effective stiffness, effk , and no damping, as shown in Figure 4.4.  

In order to calculate the effective stiffness, we first separate the physical problem into 

two parts: the contribution of the tower’s stiffness in bending and the contribution of the 

backstay cables. 
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Figure 4.3 – View of Tower-Top, Mainstay and Backstay Cables. 

 

 

 
Figure 4.4 – Effective Tower Stiffness Model 

4.3.1 Tower Contribution 

 
 To calculate the contribution of the tower’s stiffness in bending, we treat the 

tower as a simple beam subject to the transverse load of the mainstay cable tension.  The 

deflection of the cantilever beam is given by the following equation [16]: 
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EI

TLxtop 3

3

=∆   (4.2) 

Where L is the length or total height of the towers, E is the modulus of elasticity of the 

concrete material, and I is the area moment of inertia of the towers.  In treating the tower-

tops as 1-dimensional springs, whose motion is constrained to the horizontal plane, the 

contribution of the stiffness may be calculated using Hook’s Law: 

 

 toptower xkT ∆=   (4.3) 

 

 3

3
L
EI

x
Tk

top
tower =

∆
=   (4.4) 

 

4.3.2 Backstay Cable Contribution 

 

 In order to determine the contribution of the backstay cables to the overall 

effective stiffness, we use a perturbation approach.  The problem is that of solving the 

angles and lengths of the backstay cables geometrically before and after a horizontal 

perturbation of the tower-top.  The perturbation acts to stretch the backstay cables from 

their initial length, thus creating a reaction force (a tension) from which the effective 

stiffness may be calculated.  Figure 4.5 is a schematic of the geometry.  The initial 

length, 1L , and angle to the horizontal, 1θ , of the backstay cables are found using the 

design details of the AutoCAD drawings [14].  The cosine law is used to calculate the 

length of the backstay cables after the tower-top is displaced horizontally by a distance 

.topx∆ .  The actual magnitude of the perturbation has no effect on the final backstay cable 

contribution (so long as the perturbation is small, i.e. less than 1 m) 

 

 11
22

12 180cos2 θαα −=−∆+= whereLxLL top   (4.5) 
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Figure 4.5 – Geometry of the Perturbation Approach 

 

The 5 backstay cables are treated as one cable whose area is calculated by: 
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The change in tension as a result of the tower-top moving a distance .topx∆ may then be 

found using: 
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In the horizontal direction: 

 

 1cosθTTx ∆=∆   (4.8) 

 

Finally the contribution of the backstay cables to the overall effective stiffness may be 

found using: 
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x
Tk x

bc ∆
∆=   (4.9) 

4.3.3 Combined Effective Stiffness 

 

 We may now calculate the combined effective stiffness of the towers and the 

backstay cables.  The springs are taken as acting in parallel such that the total effective 

stiffness is the sum of the two parts: 

 towerbceff kkk +=   (4.10) 

 

As an example, the values found for tower T4 are mNkbc /1003.1 7×= , 

mNktower /1057.4 5×= and mNkeff /1008.1 7×= .  It should be noted that the contribution 

of the backstay cables is 2 orders of magnitude greater than the tower itself.  As shown in 

Figure 4.1 and Table 4.1 the geometry of each tower and its backstay cables are each 

unique.  This implies that the amount of tower deflection for each tower, under the static 

loads would each be different.  In reality the tensions in the backstay cables are pre-

tensioned such that, upon initial erection, the platform’s position and orientation is 

centered and level above the dish.  In the Arecibo model, for all three tower-top locations, 

an average of the three cases is used as the overall effective stiffness.  The final combined 

and averaged effective stiffness is presented in table 7.1 of the sensitivity analysis 

(Section 7.4).  

 

4.3.4 Tower-Top Motion 

  

As mentioned in Section 3.4.1, the tension in the first (uppermost) elements of 

each cable and the length of the first cable elements depend implicitly on each other.  

That is, we need to know the length, relative to the unstretched length, in order to 

calculate the tension force, however the tension force must be used to determine the 

tower-top location and hence the length, as per Equation 3.8.  Simply put, at a given 

instant, they both must be calculated simultaneously.  A system of equations is set-up and 
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solved analytically, in closed form, to arrive at a new expression for the tension in the 

first elements and to govern the tower-top motion.  The following equations describe the 

tension and the tower-top locations.  
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In the above system of equations, the unknown quantities are the tension, T, and 

the positions of the tower-tops in the horizontal plane of motion, tx and ty  (in the inertial 

frame of reference).  All other quantities are considered known.  An increase in the 

mainstay cable tension acts to move the tower-tops closer to the centre of the collector 

dish, or in other words, it acts to decrease the tower-top radial distance in the horizontal 

plane.  The angle θ  is calculated in the plan view of the Arecibo, based on the tower 

orientation, as shown in Figure 4.6. 

 

 
Figure 4.6 – Tower Orientation in the Inertial Frame of Reference 
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 After some lengthy algebra, we arrive at a quadratic equation of T in terms of the 

known quantities.  The final solution is of the form: 
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 It turns out that the negative square-root of the quadratic equation yields tensions 

that make sense physically with the actual Arecibo system, whereas the positive square-

root yields unreasonable magnitudes.  We may now back-substitute, using Equations 4.13 

and 4.14, to calculate the tower-top inertial coordinates in the horizontal plane. 

 

As an approximation, the angle that the mainstay cables make with the horizontal 

plane of motion of the tower-tops is not taken into account.  In reality, the angles at 

equilibrium are in fact small (i.e. less than 10 degrees), the cosine of the angle is always 

greater than 0.98, and we make the assumption it is approximately 1.0.  This 

simplification in the model, allows for a closed form solution, but introduces a small error 

in the final equilibrium position of the tower-tops.  In fact, the difference in the 

equilibrium position of the tower-tops (when making this simplification) is approximately 

1.8 cm of a total 94 cm deflection from the tower-tops initial start position being that of 

zero cable tension. Note that when the Arecibo was initially constructed, the cables were 

all pre-tensioned and the towers did not deflect more than 2 inches throughout the process 

[13].  The percent error in the equilibrium position may be calculated as: 

 %9.1%100
94

8.1% =×=
cm
cmError   (4.19) 
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 To eliminate this simplification, the angle that the first cable elements make with 

the horizontal plane of the tower-top motion would also have to be solved simultaneously 

with the tensions and tower-top positions, making the problem (specifically the 

mathematics) even more difficult.  Currently, the angles of all the elements must be 

calculated using the known positions of each end of the elements (as is done for the LAR 

system).  With the effect of the towers and backstay cables combined as an effective 

stiffness and the tower-top equations of motion derived, we move onto the final physical 

component of the Arecibo Telescope; the platform. 
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Chapter 5 – Platform Model 
 

 

The receiver of the Arecibo Radio Telescope is held aloft by a very large 

triangular truss section, which will be referred to herein as the “platform”.  The motion of 

the receiver, which is important to the astronomer (see performance metrics Section 6.2), 

will in fact be modeled by evaluating the dynamics of the platform’s centre of mass.  To 

begin, the construction details and the platform properties will be discussed.  Next a 

model for the aerodynamic drag experienced by the platform will be presented.  Finally, 

the platform will be treated as a rigid body, and the rotational equations of motion 

governing its orientation in space will be discussed.   

 

5.1 Construction Details 

 

 

 The platform is a very heavy structure which upon initial erection had a total 

suspended mass of approximately 550 000 kg (or 550 tons). After the second upgrade the 

platform’s mass was increased to 815 tons [2].  The platform is constructed as a truss 

structure on which the receiver may be positioned with millimeter precision [2].  The 

receiver may move along an azimuth arm which may rotate about a circular track in order 

to take on various zenith and azimuth angles.  Since Arecibo’s collector dish is spherical, 

the incident radiation does not reflect to a single focal point, but rather reflects onto a line 

[5].  For the Arecibo Radio Telescope, the receivers/transmitters are either in the form of 

a line feed or a set of enclosed secondary and tertiary reflectors, known as the Gregorian 

(as was implemented in the second Arecibo Upgrade completed in 1997) [2].  Important 

to the model is the fact that Arecibo’s platform does not itself take on different azimuth 

and zenith angles; meaning that there is no need to consider these angles in the cable 

model (unlike the LAR in which the cable lengths are changed using winches to allow the 

receiver to take on different azimuth and zenith positions).  Figure 5.1 shows a picture of 
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the rather complex truss structure.  The azimuth arm and circular track can be seen, along 

with the two types of receivers/transmitters (the line feed on the left and the spherical 

Gregorian on the right).  

 

 
Figure 5.1 – A Picture of the Arecibo Platform 

 

5.2 Coordinate Systems 

 

In order to model the platform, we first define the coordinate systems used to 

describe its position and orientation in space.  Similar to the cable model we use the 

inertial frame of reference with axes Xi-Yi-Zi (as defined in Section 3.2).  We also use the 

“body-fixed” frame oriented such that the Zb-axis points upward (toward the sky) in a 
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direction normal to the plane of the triangular shape truss.  The Xb-axis points towards 

one of the corners of the isosceles triangle and the Yb-axis completes the orthogonal 

coordinate system using the right-hand-rule.  The origin of the body-fixed coordinate 

system is located at the platform’s centre of mass.  The centre of mass will be defined in 

the next section.  Figure 5.2 shows the body-fixed coordinate system. 

 

 
Figure 5.2 – The Platform Model’s Body-Fixed Coordinate System 

5.3 Platform Properties 

 

 The following simplifications are imposed on the complex truss structure in order 

to model the platform and evaluate its properties. 

 

(i) The platform’s structure (which includes the azimuth arm is reduced to a slice 

of an isosceles triangular shaped section.  The section is of equal dimensions 

to the outer triangular truss frame of the actual Arecibo platform (may be seen 

in Figure 5.1). 
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(ii) The centre of mass is considered to be at the geometric centre of the triangular 

section.  Important to the dynamics model is the fact that the lower-most node 

(i.e. the confluence point #15) is located at this centre of mass of the modeled 

platform. 

(iii) The platform is of uniform density such that its mass (defined as the total 

suspended mass – including the receivers) is evenly distributed over its 

volume. 

 

Table 5.1 gives the platform’s physical dimensions and properties as used in the 

Arecibo Model: 

Property Symbol Value Units 
Mass mp 550 000 [kg] 
Base  b 65.84 [m] 
Height  h 57.02 [m] 
Vertical width w 9.14 [m[ 
Gross Volume V 34 313 [m3] 
Uniform Density  ρ 16.03 [kg/m3]

 

Table 5.1 – Physical Properties of Platform 

 

In the Section 5.7 we will treat the platform as a rigid body subject to both 

translational and rotational motion.  The rotational equations of motion require that we 

know the platform’s mass moment of inertia.  The mass moment of inertia of any 3-

dimensional body is a measure of the body’s resistance to angular accelerations [17] and 

is given by [7]. 
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The mass moment of inertia of the platform is conveniently expressed in a 3x3 

matrix, known as the inertia matrix (or tensor), for use in the rotational equations of 

motion [18]: 
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Rather than trying to evaluate the above integrals analytically, and with no 

success in finding expressions for the mass moment of inertia of a common triangular 

shaped section such as the platform, our attention was turned to available CAD software. 

The platform was created as a 3-dimensional part in ProE® software, into which the 

uniform density of the platform could be entered as a material property. The resulting 

inertia matrix, for the properties in Table 5.1, is found to be: 
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I   (5.3) 

 

The cross terms in the above inertia matrix are all zero, implying that there are 

two planes of symmetry in the modeled platform.  This is indeed the case with one plane 

of symmetry being the x-z plane and the second being the x-y plane.  It should also be 

noted that when the sensitivity analysis is performed (Chapter 7), and the platform mass 

is changed, the mass moment of inertia must be recalculated for each case. 
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5.4 Cable Attachment Points 
 

The mainstay cable attachment points are considered to be in line with the 

platform’s centre of mass, as previously defined. That is, they are considered to be 

located at 0=bZ  in the body-fixed coordinate system and at a radius of mrad p 01.38=  

in the direction of the three towers.  As per the Arecibo AutoCAD drawings, the mainstay 

cable attachment points are in fact in line with the platform’s arm, the receiver, and in 

fact all other extruding truss sections into the simpler triangular section.  Figure 5.3 

shows the cable attachment points in the actual platform vs. the model. 

 

 

 

 
 
 

        
Figure 5.3 – Cable-Platform Attachment Points 
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5.5 Platform Drag 

 

The model for evaluating the aerodynamic drag forces acting on the triangular 

truss platform is here described.  In general, despite the wide applications of truss 

frameworks subjected to wind forces, calculating the drag coefficients of such structures 

is in some cases “inconsistent and in disagreement with experimental results” [19].  In 

other words, without experimental results, obtaining accurate drag coefficients of a 

specific or a particular truss structure can be a very difficult task. That being said, we 

must still attempt to at least approximate the drag forces acting on the platform and to do 

this we make various simplifying assumptions to the structure itself.  

 

Arecibo’s platform although a huge structure is composed of largely spaced truss 

members.  The platform is treated as being very poor at generating a lift force. So much 

so, that the induced drag (the component of drag due to lift generation) and the lift force 

itself may be neglected.  Hence, the drag acting on the platform is assumed to be caused 

entirely by form type drag.  In general, form drag results from the pressure distribution 

normal to the body’s surface [20].  The case of pure form drag acting on a flat plate 

normal to the flow is shown in Figure 5.4. In the case of bluff bodies with sharp edges, 

such as this, the drag coefficients tends to be approximately constant over a large range of 

Reynolds numbers [20]. 

 

 
Figure 5.4 – Flat Plate Normal to the Flow [20]. 
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5.5.1 Factors Affecting Drag 

 

The main factors to be considered when determining the drag force acting on a 

trussed framework in general, at a given wind speed, are listed in Simiu and Scanlan [19]. 

  

i) The aspect ratio, λ : the ratio of the length of the overall framework to its 

width.  Which is used to consider either the two-dimensional )( ∞=λ or three-

dimensional )( finite=λ  nature of the truss section 

ii) The solidity ratio of the trussed framework, φ : the ratio of the effective area 

to the gross area (bounded by the outer truss members).  The effective area is 

here defined as the area that the shadow of the truss members would project 

onto a plane which is behind the framework and perpendicular to the airflow. 

 grosseff AA ⋅= φ   (5.4) 

iii) The angle of attack, α , of the platform with respect to the oncoming wind 

iv) Truss frame shielding: the shielding of portions of the framework by other 

portions of the framework located upwind.  We will consider the effects of 

having two adjacent truss frames normal to the wind. 

   

The first step in approximating the drag coefficients of the platform is to separate 

the horizontal and vertical sides of the platform and consider them separately with respect 

to the oncoming wind direction.  The spherical Gregorian receiver (introduced after the 

second upgrade) is also considered separately (in a later section) and added to the overall 

drag force only when considering the “upgraded” Arecibo configuration.  Figure 5.5 

shows the decomposition of the various components of the platform.  For the truss frames 

we use Equation 5.4 to calculate the effective area of the given truss face. Considering 

the wind direction normal to the given truss face, we consider its drag coefficient equal to 

that of a 3-dimensional flat plate (also oriented normal to the wind).  The area of the 3-

dimensional flat plate is considered equal to the effective area of the given truss face.  

When we take the angle of attack of the two truss faces into consideration (Section 5.5.4), 
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we will see how the drag forces of the two platform faces are combined to find the 

overall platform drag. 

 

 
Figure 5.5 – Drag Component Breakdown 

 

The coefficient of drag for a 3-dimensional flat plat, with an aspect ratio of 1, 

normal to the wind is taken from [20] as: 

 18.1)1( =DC   (5.5) 

Where the superscript (1) indicates that this is the drag coefficient for a single truss frame 

normal to the wind (i.e. no truss frame shielding is taken into account). 

 

5.5.2 Side View of Truss 

   

To obtain the drag coefficient of the vertical face, #1 of Figure 5.5, we consider 

the wind force to act normal to the vertical truss face of the platform.  The solidity ratio 

was approximated using the available AutoCAD drawings [14] and various photographs 

of the truss structure.  Figure 5.3 shows an AutoCAD drawing of the platform’s vertical 

face with the azimuth arm perpendicular to the wind direction (which is always assumed).  
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For the vertical truss face, #1, the solidity ratio is taken as 3.0=φ .  The effective area is 

then calculated as: 

 
2
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53.180
)14.984.65(3.0
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m

wbAA grosseff

=
⋅⋅=

⋅⋅=⋅= φφ
  (5.6) 

Where, the dimensions of the platform (b, h, and w) are defined by Figure 5.2 and Table 

5.1.  The aspect ratio of the vertical truss face is given by: 
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  (5.7) 

 

As a first approximation to the effects of truss frame shielding (factor iv as listed 

above) we model the vertical face as consisting of two parallel truss frameworks adjacent 

to one another and separated by a distance “e”.  The separation of the two vertical truss 

frames is taken as h/2 of the platform; mhe 51.28
2
02.57

2
=== .  Both truss frames are 

considered normal to the wind.  The ratio of the spacing to the width of the truss frames, 

will prove to be useful, and is denoted by de / [19].  The width of the truss frames is 

taken as the dimension w of the platform, mwd 14.9== .   Taking the width as ‘w’ 

rather than ‘b’ (as per Figure 5.2), we more closely represent an infinite aspect ratio truss; 

a correction factor for the infinite aspect ratio assumption will later be considered.  For 

the vertical face the ratio de /  is thus given by: 

 12.3
14.9
51.28 ==

d
e   (5.8) 

 

In Simiu and Scanlan [19] this problem was looked at by considering that the 

overall drag coefficient of the two vertical trusses (denoted )2(
DC ) may be obtained from 

the drag coefficient of a sing truss frame, when multiplied by some correction factor, k: 

 )1()2(
DD CkC ⋅=   (5.9) 
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The approximate correction factors are presented in Figure 5.6, which plots the 

correction factor )1(

)2(

D

D

C
C

k = versus the solidity ratios φ  for various ratios of  1>
d
e .  For 

the vertical face of the platform, we find that the correction factor is given approximately 

by: =k 1.7.  Therefore, we find the drag coefficient of the side view of the platform when 

normal to the wind is approximated by: 

 

 
0.2

18.17.1

)1()2(
1

=
×=

⋅= DD CkC
   

 

 

 
Figure 5.6 – Truss Pair Correction Factors [19]. 
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The values of )2(
DC obtained by Figure 5.6 are given for infinite aspect ratio truss frames.  

It has been found in [19] that for small solidity ratios, the ratio of 
)(

)(
∞=λ

λ
D

D

C
C

 is very 

nearly constant (and close to one) for a wide range of aspect ratios.  Figure 5.7 is used to 

find a second correction factor that will give us the final combined drag coefficient for 

the side view of the platform: 

 
Figure 5.7 – Finite to Infinite Aspect Ratio Correction Factors [19]. 

 

Therefore the final drag coefficient for the vertical face of the platform is given by: 

 
9.1

0.2*96.0)2(

=
=DC   (5.10) 

5.5.3 Top View of Truss 

 
The top side of the platform is considered to be far less “solid” than the vertical 

side.  It has a much larger gross area and smaller aspect ratio than the vertical surface of 

the platform.  To approximate the drag coefficient of the top face of the truss, we assume 

that it is placed normal to the wind (it should be noted that this condition is never realized 

by the Arecibo platform).  For the top truss face, the solidity ratio is taken as 1.0=φ . A 

photograph of the plan view of the platform is shown in Figure 5.8.  
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Figure 5.8 – Plan View Photograph of the Arecibo Platform 

 

The effective area of the top face is calculated as: 
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  (5.11) 

We model the vertical face as consisting of two parallel truss frameworks adjacent to one 

another and separated by a distance mwe 14.9== , equal to the vertical width of the 

platform, w.  The length and width of the truss frame are approximatly equal, as if it 

where a square. Hence the aspect ratio is taken as 1, with mbd 89.43
3
2 == .  The ratio of 

the spacing between truss fames to the width of the truss frames is given by: 

2.0
89.43

14.9 ==
d
e  

For ratios of 1<
d
e we find the coefficient of drag of the pair of trusses using the same 

principle as the vertical side of truss, that is: 
)1()2(

DD CkC ⋅=  

 

Where k is given here by the sum of two correction factors plotted in Figure 5.9 

 )( IIIk Ψ+Ψ=   (5.12) 
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Figure 5.9 – Correction Factors for Adjacent Truss Frames Used for the Top View of the 

Platform [19]. 

 

As can be seen for the vertical face having a solidity ratio less than 0.2 and 2.0/ =de , 

the correction factors are taken as: 
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  (5.13) 

 101 =+=k   (5.14) 

Therefore the combined drag coefficient of the top truss face pair is given by: 

 18.1)1()2( ≈≈ DD CC   (5.15) 

Correcting for the infinite aspect ratio, for which the correction factors are based, and 

using Figure 5.7, we obtain: 
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In summary, Table 5.2 gives the final drag properties of both the side and top faces of the 

platform: 

Property Side View Top View 
Coefficient of Drag, CD

(2) 1.9 1.14 
Effective Area, Aeff [m2] 180.53 187.71 
Solidity Ratio, φ 0.3 0.1 
Aspect Ratio,  λ 7.2 1 
e/d 3.12 0.2 

 

Table 5.2 – Summary of Drag Parameters 

 

5.5.4 Platform Angle of Attack 

 
The wind and turbulence model used in the Arecibo model was previously 

developed and used by Nahon in his model of the LAR system [6].  It considers the mean 

wind to move only in the horizontal plane, such that the Zi - component of the mean wind 

velocity is always zero.  The magnitude of the wind velocity may be calculated as: 

 

 22
WyWxw VV +=V   (5.17) 

 
 So far we have found approximate values for the platform truss section given two 

particular cases: the wind is normal to either the top of the platform or the sides of the 

platform.  In order to calculate the angle of attack at any instant in time, we need to know 

the orientation of the platform and the components of the wind velocity vector.  The 

components of the wind velocity vector are known from the wind model (developed for 

the LAR system).  The unit vector in the direction of the wind velocity (which does not 

consider the Z-component of the wind that would be introduced by the turbulence model) 

is given by: 
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With regards to the orientation of the platform, we need to know the components of the 

unit vector in the same direction as the platform’s body-fixed Zb – axis.  Here we 

introduce the rotation matrix that brings a vector’s components in the body-fixed frame to 

components in the inertial frame as [24]:  
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B  (5.19) 

 

The 3rd column of the above rotation matrix gives the direction of the Zb axis in the 

inertial frame [7], which is exactly what we need.  The unit vector, in the direction of the 

Zb axis, is given in the inertial frame of reference as:  

 kjiZ ˆ)cos(cosˆ)cossinsinsin(cosˆ)cossin(cosˆ φθφθφθφ +Ψ−Ψ+Ψ=B   (5.20) 

 

The angle of attack of the platform is defined relative to the vertical sides of the 

platform (i.e. the side view) as shown in Figure 5.10.   

 
Figure 5.10 – Angle of Attack 
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The angle of attack is calculated as the angle between the unit vectors BẐ  and 

wV̂ .  This angle is found by taking the dot product of the two unit vectors such that: 

 

 












 •= −
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cos 1α   (5.21) 

 

We are now ready to evaluate the overall drag force acting on the platform at any 

given angle of attack.  In theory, the angle of attack of the platform covers the range of 90 

to 0 degrees.  In reality the angle of attack relative to the vertical face of the truss is 

always very close to 90o.  In other words, the drag of the platform will be due mainly to 

the vertical face of the platform normal to the wind.  However we have still created a 

model capable of taking into account the entire range of angles of attack.    This is done 

by varying the product of the coefficients of drag times their respective effective areas 

from one extreme value of α  to the next.  The reason for doing this is because the drag 

coefficients, )2(
1DC  (for the side view) and )2(

2DC (for the top view), are based on 

different effective areas.  The way in which we vary this product of ACD  is such that a 

smooth curve is generated by the following relation [21].  Figure 5.11 shows the variation 

of the product of ACD  with angle of attack. 

 

 αα 2
2

)2(
2
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1
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eff
ACACAC DeffDD +=   (5.22) 

 

The drag force acting on the platform at all angles of attack is treated as acting through 

the platform’s centre of mass.  Finally, for the “original” Arecibo configuration, the drag 

acting on the platform is given by: 

 

 )(
2
1 2 ACVDD DwairpMofc ρ==   (5.23) 
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Platform CDA vs Angle of Attack
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Figure 5.11 – Platform Cd*A versus Angle of Attack 

 

5.5.5 Drag of Gregorian System 

 

The drag coefficient of the Gregorian receiver is calculated based on the drag 

around a sphere.  The model is used from Nahon’s previous model of the LAR payload 

treated as a sphere.  The Reynolds number (based on the diameter of the sphere) is 

important to the drag coefficients in this case, since the separation point of the flow may 

change with Reynolds number as shown in Figure 5.12.   
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Figure 5.12 – Flow Around a Sphere for (a) Low Reynolds Number and (b) High 

Reynolds Number [20]. 

 

For the various ranges of Reynolds number (corresponding to laminar, transition, 

and turbulent flow) the following drag coefficients are used to calculate the drag force 

acting on the Gregorian receiver: 

 

For 631000Re >  :   15.0=DGC  (5.24a) 

For 631000Re251000 ≤≤ : 
4.0

4.5log(Re)25.04.0 −×−=DGC   (5.24b) 

For 251000Re <  :  4.0=DGC   (5.24c) 

 

The drag force on the Gregorian is then calculated based on: 
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2
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Where GA  is the cross sectional area of the sphere with diameter mdG 81.19= : 
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We only consider the drag of the Gregorian receiver when we are modeling the 

“upgraded” Arecibo configuration.  For the “original” Arecibo configuration the drag 

caused by the narrow line feed is neglected as compared to the drag caused by the rest of 

the platform structure.  A final note regarding the Gregorian drag is that it is treated as 

acting through the platform’s centre of mass, thereby causing no moments on the 

platform.  When modeling the “upgraded” Arecibo, the total drag force acting on the 

node located at the platform’s centre of mass is given by: 

 

 GPMofC DDD +=   (5.27) 

 

5.6 Translational Motion 

 

The translational motion of the platform is defined by the acceleration of its centre of 

mass, denoted here with the subscript G, in the inertial frame.  The centre of mass of the 

platform is node #15 according to Figure 2.2.  The equations of motion are governed by 

Newton’s second law such that [22]: 
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The sum of the forces acting on the centre of mass is the vector summation of the 

components of the forces acting on the platform.  The forces acting on the platform 

include the cable forces (as considered in the cable dynamics section), the platform’s 
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weight, and the aerodynamic drag (which is assumed to act through the platform’s centre 

of mass).  The cable forces are taken as those forces that would be acting at the nodes #5, 

10, and 15 if they were each considered the last node of their respective cables.  The last 

(and shared) node being the centre of mass of the platform is taken as having a mass 

equal to that of the entire platform; 550 000 kg.  The acceleration of the platform’s centre 

of mass, at a given instant in time, is then calculated by dividing the sum of the forces at 

that instant in time by the total platform mass.  These accelerations are entered into the 

appropriate elements of )(tX& ; the derivative of the state vector.  

 
 

5.7 Rotational Motion 

 

The LAR model, from which the Arecibo model is developed, considers its 

“payload” (equivalent to Arecibo’s platform) to be spherical and subject only to 

translational motion.  We will now consider the effect of the moments caused by the 

forces acting at a particular location on the platform.  In order to do so, the platform is 

first converted from a point mass to a rigid body, and the cable-platform attachment 

points are defined (Section 5.4).  A rigid body is such that its changes in shape may be 

neglected as compared to the overall dimensions of the body [17].  The platform is 

defined in space by not only the position of its centre of mass, but also by its orientation.  

The platform must satisfy Euler’s rotational equations of motion given by [25]: 

 ωωω rrrr
&

rr
CMCMCM IIM ×+=   (5.29) 

 

Before discussing the strategy for setting up and numerically solving Euler’s 

rotational equations of motion, we will first consider the definition of the Euler angle set 

as well as the transformations required between the body-fixed and inertial coordinate 

systems. 
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5.7.1 The Z-Y-X Euler Angles 

 

A new set of state variables, in the inertial frame, are defined to account for the 

platform’s orientation and rotational motion in space; ),,,,,,( ΨΨΦΦ &&& θθ .  That is, the 

platform’s state (in general) is completely defined by its position and velocity, and also 

by its orientation, and angular velocity.  As is commonly used in Aeronautics and Flight 

Mechanics [20], the Z-Y-X Euler angle set is used in the Arecibo model.  The main 

difference from the Z-Y-X angle set as used in flight mechanics is the orientation of the 

Z-axis (which is pointed toward the earth in flight mechanics [23] but is pointed toward 

the sky for the Arecibo Radio Telescope).  The orientation of the platform is given by the 

Z-Y-X Euler angles of ΨΦ ,,θ using the following procedure (taken directly from [24]) 

and is also shown schematically in Figure 5.13 

 

(i) Rotation by an angle Ψ  about the inertial Z-axis 

(ii) Rotation by an angle θ  about the resulting Y-axis (from the previous rotation) 

(iii) Rotation by an angle Φ about the resulting X-axis (from the previous rotation) 

 

 

 
Figure 5.13 – Using the Z-Y-X Euler Angle Set [24] 
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Note that using the right hand rule gives the directions for positive angles of rotation.  

Care should be taken here since the final orientation of the platform does in fact depend 

on which order these rotations take place.  With no aerodynamic forces or initial 

perturbations acting on the platform the inertial and body-fixed frames will remain 

aligned and the Euler angles will all be zero [20]. 

 

5.7.2 Transformations 

 
In the body-fixed frame the angular velocities are defined as p, q, and r as shown 

in Figure 5.14.  We must define the transformation matrices for both vector and rotational 

parameters in order to allow us to move back and forth from the body-fixed to the inertial 

frame as required.  For example, this is necessary when the cable-platform attachment 

points are defined in the body-fixed frame and their coordinates are required in the 

inertial frame of reference. Since the platform is treated as a rigid-body, these inertial 

coordinates are determined from the Euler angle set.  The transformation matrices have 

been used in the simulation of a multi-tethered aerostat system by Zhao [24].  The 

following equations, transformations, and conventions are taken directly from this work.   

 
Figure 5.14 – Angular Velocities in the Platform’s Body-Fixed Frame 
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The rotation matrix that brings a vector’s components in the body-fixed frame to 

components in the inertial frame is given by [24]: 

 

 

(5.30) 

 

Where: 

 

 

  (5.31) 

 

 

 

The lower and upper subscripts of B and I indicate that the given rotation matrix is used 

when going from the body-fixed to the inertial coordinate systems.  Notice that the 

rotation matrix used in the cable model Equation 3.2 is obtained from the above rotation 

matrix, Equation 5.31, by setting 0=Ψ  [24]. 

 

 To move from vector components in the inertial frame to the body-fixed frame the 

inverse of the rotation matrix is required and obtained by the transpose of TI
B , since the 

rotation matrix is orthogonal: 
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Finally, we must also form the transformation matrix that will allow us to move 

back and forth between the time derivatives of the Euler angles in the inertial frame and 

the angular velocities p, q, and r of the platform in the body-fixed frame. 
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  (5.34) 

Where: 
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wT   (5.35) 

 

The inverse transformation, which allows us to obtain the angular velocities of the 

platform from the time derivative of the Euler angles, is given by: 

 

 
















−

−
=−

φθφ
φθφ

θ

coscossin0
sincoscos0

sin01
1

wT   (5.36) 

  

A different set of Euler angles using the Z-Y-Z convention was initially 

developed for the Arecibo platform.  However, since the transformation matrix, wT , in Z-

Y-Z convention becomes degenerate whenever 0sin == θθ , problems arose in trying to 

avoid that particular condition.  If we instead use the Z-Y-X Euler angle set, we see that 

the transformation matrix, wT , in this case becomes degenerate whenever 0cos =θ  or 

o90=θ , however this case is never physically realized by the Arecibo platform.  Hence, 

the Z-Y-X convention has been chosen to model the platform’s rotation. 
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5.7.3 Rotational Equations of Motion 

 

The equation that governs the platform’s rotation is known as Euler’s equations of 

motion, and is given by [22]:  

 ωωω rrrr
&

rr
IIM ×+=   (5.37) 

The moments acting on the Arecibo platform must be evaluated in order to solve 

Euler’s rotational equations of motion numerically.  As previously mentioned, the 

aerodynamic drag of the platform is assumed to act through the platform’s centre of 

mass, meaning that the wind force on the truss section does not apply any moment to the 

platform.  The cable-platform attachment points however do indeed cause a moment, 

which is taken into account in the following manner: 

 

(i) Sum the cable forces acting along the q-axis in the cable body-fixed frame. 

(ii) Transform these forces (acting along the cable q-axis) to the inertial frame of 

reference and resolve the forces of the three mainstay cables into their inertial 

components 

(iii) Transform the resulting sum of inertial force components into the platform’s 

body-fixed frame of reference. 

(iv) Find the components of the moments acting on the platform (in the platform-

fixed frame) using the components of   ∑ ×= ii FrM . 

 

We wish to calculate ω
r
& , the time derivative of the angular velocity vector, which will 

be transformed into the second derivative of the Euler angles with respect to time.  These 

accelerations along with first derivative of the Euler angles will form the last six elements 

of )(tX& ; the derivative of the state vector.  As discussed in Section 2.3, the numerical 

integration scheme may then be applied in a step-wise manner in time, to observe the 

rotational motion of the platform.  In order to calculate ω
r
&  at a given instant, we first 

calculate the angular velocities of the platform in its body-fixed frame using the known 

first derivatives of the Euler angles (from the state vector): 
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Rearranging Equation 5.37 we have: 

 ωωω rrrrr
&

r
IMI ×−=   (5.39) 

The terms on the right hand side of the equation are known.  Hence, we obtain: 

 )()( 11 ωωωω rrrrr
&

r
& IMIII ×−== −−   (5.40) 

Finally, the second derivatives of the Euler angles are found by applying the chain rule to 

Equation 5.34: 

 ωωθ
φ

r&&r

&&

&&

&&

ww TT +=
















Ψ
  (5.41) 

To summarize the entire dynamics model description of Chapters 3 to 5, Figure 5.15 

shows a flow diagram of the overall process required to obtain the time derivative of the 

state vector )(tX& , which is then sent to the Runge-Kutta integration scheme. 
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Figure 5.15 – Dynamics Model Flowchart 
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Chapter 6 – Performance Evaluation 
 

6.1 Introduction 

 

 The performance evaluation of the Arecibo Radio Telescope is a most valuable 

exercise that will help us assess the dynamic performance of the system as well as 

demonstrate the capabilities of our computer model.  We begin by explaining how the 

“performance” of the Arecibo Radio Telescope is defined.  We may then use our model 

to observe (over time) the motion, performance metrics, and other parameters of interest 

of the Arecibo Radio Telescope under turbulent and non-turbulent wind conditions at a 

variety of wind speeds and directions.  In fact, if we include the sensitivity analysis 

carried out in Chapter 7, the Arecibo model has been subjected to more than 80 different 

dynamic test cases which consider a variety of system configurations and wind 

conditions.  The output and results will be presented in the form of tables and figures.   

 

6.2 Performance Metrics 
 

 In order to evaluate the performance of the Arecibo system we must first 

understand what “performance” actually means in terms of the system’s motion.  A 

performance metric is defined as a parameter that allows us to quantitatively evaluate the 

system’s performance.  Important to the astronomer are the positional and rotational error 

of the system’s receiver/transmitter (to and from which the electromagnetic radio waves 

reflect from the collector dish).  The receiver is defined in our model as the centre of 

mass of the platform (node #15 in Figure 2.2). To the satisfaction of Steve Torchinsky 

[25] (Head of Astronomy at the Arecibo Observatory) the following parameters have 

been chosen to quantitatively define the dynamic performance of the Arecibo Radio 

Telescope: 
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(i) Error of the receiver position in the focal plane 

(ii) Error of the receiver position out of the focal plane 

(iii) Tilt angle of the receiver relative to the inertial Z-axis. 

 

The so-called “focal plane” is defined as the plane locally tangent to a hemisphere 

[6] of radius equal to the platform’s static equilibrium height above the bottom-centre of 

the collector dish (i.e. the origin in the inertial frame).  Since the triangular truss platform 

does not itself take on any azimuth or zenith angles, the focal plane is in fact always 

horizontal.  Figure 6.1 shows the hemisphere as defined. 

 

 
Figure 6.1 – The Focal Plane and Hemisphere 

 

The error out of the focal plane at any instant is calculated based on the difference 

between the platform’s actual height and the height of the focal plane (which, to re-

emphasize, is the platform’s height when resting at static equilibrium): 

 

 planefocalCMout ZZError −=   (6.1) 
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The error out of the focal plane is taken as positive if the platform is outside of the 

hemisphere (above the focal plane) and negative when the platform is located inside the 

hemisphere (below the focal plane).   

 

The error in the focal plane at any instant is calculated as the radius of the 

platform’s horizontal displacement in the focal plane.  The error in the focal plane is 

always a positive quantity and is best visualized if one where looking directly down on 

the platform from high above it. 

 22
CMCMin YXError +=   (6.2) 

 

 Finally, we define the tilt angle (denoted by β ) as the angle between the 

platform’s Zebu-axis (in its own body-fixed frame) and the inertial Zip-axis (which always 

points straight up), as shown in Figure 6.2.   

 

 

 

 
Figure 6.2 – Tilt Angle Performance Metric 
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In order to calculate β , we use the same technique as that used to calculate the 

platform’s angle of attack in Section 5.5.2.  That is, we use the rotation matrix that brings 

any vector from the body-fixed coordinate system to the inertial coordinate system.  The 

third column of this rotation matrix represents the components of the unit vector in the 

direction of the platform’s body-fixed Zebu-axis.  This unit vector is given in the inertial 

frame by equation (5.20) as: 

 

 kjiZ ˆ)cos(cosˆ)cossinsinsin(cosˆ)cossin(cosˆ φθφθφθφ +Ψ−Ψ+Ψ=B   (6.3) 

 

The unit vector in the direction of the inertial Zip-axis is given by: 

 

 kjiZ ˆˆ0ˆ0ˆ +⋅+⋅=I   (6.4) 

 

The tilt angle is then found be evaluating the dot product of the above unit vectors: 

 

 












 •= −

IB

IB

ZZ
ZZ
ˆˆ
ˆˆ

cos 1β   (6.5) 

 

 )cos(coscos 1 φθβ −=   (6.6) 

 

The tilt angle is directly related to the so-called “pointing accuracy” (PA) of the receiver 

using the following approximation: 

 

 βtan
CMiZPA =   (6.7) 

 

Where 
CMiZ  is the elevation of the platform’s center of mass in the inertial frame of 

reference.  However, the tilt angle itself has been chosen as the performance metric, 

while the pointing accuracy may be subsequently found using equation 6.7 if so desired. 
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6.3 Additional Parameters of Interest 

 
 Aside from the performance metrics, there are often additional parameters that 

may be of interest, perhaps to a structural engineer, rather than to the astronomer.  The 

parameters observed in addition to the performance metrics include the tension force in 

the cables as well as the tower-top deflections.  All tensions, unless stated otherwise, are 

presented for the entire effective area of the mainstay cables.  That is, the values in the 

plots that follow must be divided by the number of mainstay cables in order to find the 

tension per cable.  Furthermore, the tension forces quoted are those acting specifically in 

the first cable elements (#1, 6, and 11 as per Figure 2.2).  The tower deflections are given 

in the horizontal plane of motion of the tower-tops relative to their equilibrium position.  

The deflections are considered positive if the tower is brought closer to the centre of the 

system (i.e. due to an increase in tension) and negative if the opposite is true. 

 

6.4 Indicators 

 
 

There are three different indicators that are used in comparing the results of the 

various test cases.  These indicators are the average, the root-mean-square, and the peak 

values of the performance metrics and/or additional parameters of interest over the total 

sampling time.  The average value of a metric, X, is the sum of that metric from time to to 

tf divided by the number of times it was sampled/stored.  

 
n

X
X

n

avg

∑
= 1   (6.8) 

For example, if the simulation run time is set for 10 seconds and the value of the metric is 

stored in an array every 0.1 seconds, then in this case the value of “n” would be equal to 

100.  Next we define the root-mean-square for our purposes to be: 

 ∑ −=
n

avgRMS XX
n

X
1

2)(1   (6.9) 
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Finally, the peak value of the metric is simply defined as the maximum error encountered 

over the given period of time.  If the max error is in fact negative, than the peak error is 

also taken as negative: 

 maxXX peak =   (6.10) 

 

6.5 Arecibo Model Configuration 

 
 

Before presenting any results from the test cases, it will be made clear exactly 

which physical configurations of the telescope are being simulated and how they differ 

from the actual Arecibo Radio Telescope.  Table 6.1 gives the details of the “original” 

Arecibo model and how it differs from the actual Arecibo construction.  The entire 

performance evaluation and sensitivity analysis has been performed on the original 

Arecibo configuration.  The upgraded configuration is presented immediately following 

the performance evaluation (in Section 6.8) in order to assess the impact of some of the 

recent design changes made to the Arecibo Radio Telescope. 

 

 Actual Construction of  
the Original Arecibo 

Model of the  
 Original 
Arecibo  

platform mass 550 000 kg 550 000 kg 
receiver drag Line Feed Line feed neglected 

Mainstay Cables 4 cables per tower 
d = 3" 

4 cables per tower 
d = 3" 

Backstay Cables 5 cables per tower 
d = 3.25" 

5 cables per tower 
d = 3.25" 

Main Auxiliary 
Cables N/A N/A 

Backstay Auxiliary 
Cables N/A N/A 

Tie Down Cables  

6 cables total 
d=1.5" 

Two off-vertical cables (functioning as 
catenaries) run from each corner of the 

platform and anchored near the rim of the 
reflector [5] 

N/A 

Table 6.1 – The Original Arecibo Configuration 
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6.6 Equilibrium Condition 

 
 

An important feature of the Arecibo model is the equilibrium condition of the 

system.  This condition must be reached before subjecting the system to various wind 

configurations.  Given the specific physical parameters of a given configuration of 

interest, the system is initially (at time = 0 seconds) released from the unstretched length 

configuration shown in Figure 3.2.  The system’s motion will eventually damp out over 

time and settle at its equilibrium height and orientation.  The following Figures show how 

the performance metrics vary over the first 400 seconds of the total 1500 seconds 

required for the original Arecibo configuration to come to equilibrium.  The reason for 

letting the system run for 1500 seconds is to ensure that the vertical motion is of the order 

of millimeters or less (if possible) before subjecting the system to the various wind 

conditions.  Notice that the platform remains level and centered as it oscillates in a 

vertical motion.  In reality, upon initial construction, the supporting cables of the Arecibo 

structure were all pre-tensioned prior to lifting the platform into the desired position [13].  

The tower-top radial distances from the centre of the collector dish are also plotted versus 

time as they reach their equilibrium values in the simulation.  The tower numbering is 

explained in the next section through Figure 6.5 
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Figure 6.3 – Performance Metrics to Equilibrium 
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Figure 6.4 – Tower-Top Positions to Equilibrium 

 

6.7 Dynamic Runs 

 
 
 In this section, we discover the quality and variation in the performance of 

Arecibo under a variety of wind speeds, wind directions, and turbulence.  All test cases 

are carried out on the original Arecibo model.  We define the wind direction as is shown 

in Figure 6.5. A wind direction of 0° implies the wind is directed toward positive infinity 

on the inertial Xi-axis.   
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Figure 6.5 – Wind Direction and Tower Numbering 

 

 

6.7.1 Effect of Wind Speed 
 
 
 In varying the wind speed, we keep the wind direction constant at 0° and consider 

no turbulent wind effects.  We wish to determine the magnitude of motion and the 

performance metrics with increasing wind speeds.  The range of wind speeds used was 0-

30 m/s.  The first real proof of the Arecibo Radio Telescope’s stability was on August 28, 

1966, when the system remained stable while encountered by up to 70 mile per hour (30 

m/s) winds caused by the passing of Hurricane Inez [13].  We also know that wind speed 

of up to 17 miles per hour (7.6 m/s) cause “no significant displacement of the structure” 

[5]. Significant displacement of the structure is considered to be of the order of 

millimeters [2], which is quite impressive for such a massive structure.  Table 6.2 shows 

the test matrix used for the wind speed evaluation. 
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Test # Wind Speed Wind Direction  Turbulence 
  m/s deg   
1 0 0 No 
2 1 0 No 
3 2 0 No 
4 3 0 No 
5 4 0 No 
6 5 0 No 
7 6 0 No 
8 7 0 No 
9 8 0 No 
10 9 0 No 
11 10 0 No 
12 11 0 No 
13 12 0 No 
14 13 0 No 
15 14 0 No 
16 15 0 No 
17 20 0 No 
18 25 0 No 
19 30 0 No 

Table 6.2 – Wind Speed Test Matrix 

 

For each of the above test cases, the simulation was run for 70 seconds and the 

wind was increased gradually to its full speed in the first second (t = 0.1 to 1.1 seconds).  

The following figures show the variation of the performance metrics with wind speed: 
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Figure 6.6a - Error in the Focal Plane vs Wind Speed 
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Figure 6.6b - Error Out of the Focal Plane vs Wind Speed 
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Figure 6.6c - Platform Tilt Angle vs Wind Speed 

 

We notice that the error in the focal plane as well as the tilt angle seem to fit a 

quadratic shaped curve with increasing wind speed, and that the error out the focal plane 

is rather insignificant.  We can also conclude that the original Arecibo model, even at 

high wind speeds, is subject to motion on the order of centimeters or tens of millimeters.  

The tilt angle is also very small at an average of approximately 0.02° (or rad4105.3 −× ) 

even at 20 m/s wind speeds.  At this wind speed the tilt angle is in fact greater than the 

desired and “ambitious goal” (but not required) of rad5104.2 −×  [5].  The peak tower 

deflection, even at the hurricane wind speed of 30 m/s, was found to be 6.2 mm which is 

well within the permissible limit of 2 inches, or 50.8 mm [13]. 
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6.7.2 Effect of Wind Direction 

 
 
 The effect of wind direction was tested at a constant wind speed of 10 m/s and 

with no turbulent conditions.  The wind direction was increased from 0° to 120° in 

increments of 15°.  The following figures present the performance metrics versus wind 

direction for the original Arecibo model. 
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           Figure 6.7a - Error In the Focal Plane vs Wind Direction         Figure 6.7b - Error Out of the Focal Plane vs Wind Direction 
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Figure 6.7c - Platform Tilt Angle vs Wind Direction 
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The above figures show that the wind direction has little effect on the 

performance of the system.  It is interesting however to observe the cable tensions and 

tower-top deflections versus wind direction.  The following figures show the symmetry 

of the system as the wind direction changes from 0° along the T1 radial line and 120° 

along the T2 radial line.  Notice that at exactly 60° the tension in the first cable elements 

of T1 and T2 are equal while the tension in T3 is at its maximum value (demonstrating a 

form of symmetry).  Also note that the tower-top deflections (denoted B1, B2, B3 

corresponding to towers T1, T2, T3, respectively) follow an identical symmetry as the 

tension. 
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Figure 6.7d - Average Cable Tension vs Wind Direction 
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Figure 6.7e - Average Tower Deflection vs Wind Direction 

 

6.7.3 Effect of Turbulence 

 
 
  Both the wind and the turbulence model employed herein are taken from the 

wind and turbulence model used in the LAR system.  For details regarding the turbulence 

model, the reader is referred to [6] in which it is stated that the turbulent gusts, imposed 

on the mean wind, “were generated with the desired gust statistical properties, including 

turbulence intensity, scale length, and spectra”.  The turbulence model acts to vary the 

wind speed above and below its mean value in an intentionally random manner.  The 

effects of the turbulent wind conditions are evaluated by considering the wind direction 

constant at 0° and varying the mean wind speed from 0 to 15 m/s.  The turbulent results 

are superimposed onto the results obtained for the same constant wind speed for a basis 

of comparison.  The following figures show the performance metrics in turbulent 

conditions. 
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Figure 6.8a - Error in the Focal Plane vs Turbulent Mean Wind Speed 
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Figure 6.8b - Error out of the Focal Plane vs Turbulent Mean Wind Speed 
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Figure 6.8c - Platform Tilt Angle vs Turbulent Mean Wind Speed 

 

Under turbulent conditions particularly at velocities greater than 10 m/s, the most 

obvious effect is an increase in the average and peak performance metrics.  This can be 

reasoned by considering the non-linear relationship between mean wind speed and the 

performance metrics (as shown in Figures 6.8 a, b, c).  Let us assume that over a long 

enough time, the turbulent model gusts the wind, in a random manner, above and below 

the mean wind speed by an equal amount.  When the turbulence model gusts the wind 

above its mean value, the error is affected (increased) more than it is affected when the 

turbulence gusts the wind below its mean value.  Hence, we see that when turbulence is 

applied the errors increase and the performance of the system is very slightly degraded.  

However, even under these turbulent conditions the original Arecibo model proves to be 

a well performing and stable system with very small positional and rotational errors.  
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6.8 Upgraded Arecibo Configuration 
 

 

 One of the advantages of having developed a model of the original Arecibo 

configuration is that we may evaluate the effect of the some of the recent design changes 

[2].  After two big upgrades, the “upgraded” Arecibo configuration is very different from 

the “original” in terms of the cable system layout, the mass of the platform, and the 

receiver system.  In this section we would like to compare the “original” Arecibo model 

as per Table 6.1 with the “upgraded” Arecibo model.  Again, we must be clear on exactly 

what features of the upgraded system are being modeled.  Table 6.3 gives the details of 

the “upgraded” Arecibo configuration and how it differs from the actual Arecibo 

construction after the two major upgrades. 

 

 Actual Construction of the  
Upgraded Arecibo 

Model of the  
Upgraded 
Arecibo 

Model of the 
 Original 
Arecibo  

platform mass 815 000 kg 815 000 kg 550 000 kg 

receiver drag Gregorian System Gregorian treated as 
a sphere 

Line feed 
neglected 

Mainstay Cables 4 cables per tower 
d = 3" 

4 cables per tower 
d = 3" 

4 cables per 
tower 
d = 3" 

Backstay Cables 5 cables per tower 
d = 3.25" 

5 cables per tower 
d = 3.25" 

5 cables per 
tower 

d = 3.25" 

Main Auxiliary 
Cables 

2 cables per tower 
d = 3.25" 

Attached 2/3 of the way along the sides of the 
triangular truss 

2 cables per tower 
d = 3.25" 

Added to the 
effective area of the 

mainstay cables.  
Attachment points 

not considered 

N/A 

Backstay Auxiliary 
Cables 

2 cables per tower 
d = 3.625" 

2 cables per tower 
d = 3.625" N/A 

Tie Down Cables  

6 cables total 
d = 1.5" 

Two cables run vertically from each corner of 
the platform.  Active Control: Jacks which can 

exert up to 60 tons of vertical force.  [2] 

N/A N/A 

Table 6.3 - The Upgraded Arecibo Configuration 
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In order to model the recent design changes, the mass of the platform was 

increased from 550 tons to 815 tons.  The new mass moment of inertia of the platform 

was recalculated using the CAD software: 

 

Mass Ix Iy Iz 
kg kgm^2 kgm^2 kgm^2 

550000 1.0316E+08 1.0316E+08 1.9866E+08 
815000 1.5277E+08 1.5277E+08 2.9420E+07 
Table 6.4 -Upgraded Platform Mass Moment of Inertias 

   

The new effective tower stiffness (with the new auxiliary backstay cables) was 

found using the method outlined in Section 4.3 to be: 

 mNkeff /101.977 7×=   (6.11) 

The new auxiliary mainstay cables were added to the overall effective area of the 

existing mainstay cables. Important to note here are that the attachment points and any 

added rotational stability achieved by the auxiliary mainstay cables were not taken into 

account. 

 2m0.0289=effA   (6.12) 

 

Finally the drag of the Gregorian receiver (as outlined in Section 5.5.5) was added 

to the overall drag of the platform and treated as acting through the platform’s centre of 

mass.  With the changes in place, we let the new upgraded configuration come to a new 

equilibrium and we compare the average performance metrics of the two configurations 

over a range of wind speeds.  Note that the equilibrium heights of the original and 

upgraded configurations (even with the large mass and cable property changed) are 

within 0.6 m of each other.  This was reassuring, since the number and sizes of the 

auxiliary cables added during the upgrade had the purpose of keeping the platform 

exactly where it always had been, while using the three existing towers. 

 



 88

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 2 4 6 8 10 12 14
Wind Speed (m/s)

Er
ro

r i
n 

th
e 

Fo
ca

l P
la

ne
 (m

m
)

Original
Upgraded

 
Figure 6.9 - Average Error in the Focal Plane vs Wind Speed 
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Figure 6.10 - Average Platform Tilt Angle vs Wind Speed 
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 The errors out of the focal plane in both cases proved to be insignificant (of the 

order of 0.01 mm) and are not shown here.  The results for both the error in the focal 

plane and the platform tilt angle are shown to be significantly less for the upgraded model 

than for the original model.  Thus we can conclude that the recent design changes 

(studied in the context of these models) were in fact beneficial to the system’s 

performance. 

 

6.9 Selected Cases 
 

 

 Before moving on to the sensitivity analysis in the next chapter, it is of interest to 

study selected cases in more detail.  In fact, two cases based on the original Arecibo 

model will be displayed here to better our understanding of the system’s behavior, if not 

for the purposes of demonstrating the output capabilities of the Arecibo model.  The first 

case (case A) is for a wind speed of 10 m/s, wind direction of 60°, and with no turbulence 

effects.  The second case (case B) is for a wind speed of 10 m/s, wind direction of 0°, and 

with the turbulence active.  The following output demonstrates the system’s behavior 

over a 70 second period.  Depending on the specific information required; the Arecibo 

model is capable of presenting a variety of data.  For Case A, we see how the 

performance metrics and platform position and rotation each vary with time under the 

constant wind speed.   
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Figure 6.11 - Case A Performance Metrics 
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Figure 6.12 - Case A Platform Rotation 

 
Figure 6.13 - Case A Platform Translation 



 92

In Figure 6.12, the y-axis angles alpha, beta, and gamma, refer to the Z-Y-X Euler 

angles of Ψ,,θφ respectively.  Notice that the wind direction of 60° has caused the 

platform to be displaced by a positive x and positive y component.  The initial transient 

of the wind increasing to full speed in the first second may be seen (especially for the 

error in the focal plane).  The following output is for Case B: Wind speed 10 m/s, wind 

direction 0°, with turbulence. 

 
Figure 6.14 - Case B Performance Metrics 
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Figure 6.15 - Case B Platform Rotation 

 

 
 

Figure 6.16 - Case B Platform Translation 
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Figure 6.17 - Case B: Tower-Top Motion 

 

For Case B, we have also included the tower-top motion, represented by the radius, 

from the inertial Zi-axis, of the tower-tops in their horizontal plane of motion.  Note that 

in Case B, the random effects of turbulence are present and observed.  However the 

system’s motion, even under turbulent conditions, is still on the order of millimeters.  In 

the sensitivity analysis of the next chapter we will see figures that give the average, root-

mean-square, and peak motion for a variety of different system configurations. 
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Chapter 7 Sensitivity Analysis 

 
Often one is interested in knowing which physical parameters of a given system, 

if changed or redesigned, could improve the system’s performance.  In our sensitivity 

analysis, the following six parameters are varied individually while keeping all else 

constant: 

 

(i) Number of Mainstay Cables 

(ii) Tower Radius (Cable Length) 

(iii) Effective Tower Stiffness (Number of Backstay Cables) 

(iv) Mass of the Platform 

(v) Cable-Platform Attachment Points 

(vi) Mainstay Cable Properties (Plasma Rope) 

 

It should be clearly noted that the following sensitivity analysis has been 

performed on the original Arecibo model as described in Table 6.1.  Also, each test case 

of this sensitivity analysis presents a new physical configuration.  Therefore, for each 

case, the system must be allowed to come to a new equilibrium condition before applying 

the given winds (see Section 6.6).   
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7.1 Test Matrix 
 
 The following Table 7.1 presents the test matrix employed in our sensitivity 

analysis, with the highlighted values referring to the nominal or original Arecibo model 

values. 

 
Test # Configuration Configuration Speed Direction  Turbulence

      m/s deg   
46 No. of Cables = 3 10 0 No 
47 No. of Cables = 4 10 0 No 
48 No. of Cables = 5 10 0 No 
49 No. of Cables = 6 10 0 No 
50 

Effective Mainstay Cable Area 
- incremented by the number 
of mainstay cables per tower 

No. of Cables = 7 10 0 No 
51 rad = 150 m 10 0 No 
52 rad = 180 m 10 0 No 
53 rad = 213 m 10 0 No 
54 rad = 240 m 10 0 No 
55 

Tower Radius 
-  increases cable length 

rad = 270 m 10 0 No 
56 No. of Cables = 0 10 0 No 
57 No. of Cables = 1 10 0 No 
58 No. of Cables = 3 10 0 No 
59 No. of Cables = 5 10 0 No 
60 No. of Cables = 7 10 0 No 
61 No. of Cables = 9 10 0 No 
62 No. of Cables = 11 10 0 No 

63 

Effective Tower Stiffness 
- Incremented by the number 
of backstay cables per tower 

keff = infinity 
(No Tower Motion) 10 0 No 

64 mp = 400 tons 10 0 No 
65 mp = 550 tons 10 0 No 
66 mp = 700 tons 10 0 No 
67 mp = 850 tons 10 0 No 
68 

Platform Mass 

mp = 1000 tons 10 0 No 
69 radp = 20 m 10 0 No 
70 radp = 30 m 10 0 No 
71 radp = 38 m 10 0 No 
72 

 
Cable-Platform Attachment 

Points 
radp = 50 m 10 0 No 

73 2 0 No 
74 4 0 No 
75 6 0 No 
76 8 0 No 
77 10 0 No 
78 12 0 No 
79 

Cable Properties: Plasma Rope 
dc = (six 2” cables)/tower

ρ = 840 kg/m^3 
E = 37.4e9 N/m^2 

14 0 No 
Table 7.1 - Test Matrix for the Sensitivity Analysis 
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7.2 Number of Mainstay Cables 

 

As per the test matrix, the number of mainstay cables has been incremented from 

3 to 7 cables per tower in increments of 1.  This was done by increasing the effective area 

of the mainstay cables using Equation 3.1.  The following Table 7.2 presents the effective 

mainstay cable areas used for each test case.  

 
No. of Mainstay 

Cables 
Effective 

Area 
  [m2] 
3 0.014 
4 0.018 
5 0.023 
6 0.027 
7 0.032 

Table 7.2 - Mainstay Cable Effective Areas 

 

 Figure 7.1 shows that as we increase the number of mainstay cables, the effective 

stiffness of the cables increases such that the equilibrium height of the platform increases. 
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Figure 7.1 - Equilibrium Platform Height vs No. of Mainstay Cables 
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Figure 7.2 shows that the as the number of mainstay cables are increased, the equilibrium 

tensions per cable is decreased. 
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Figure 7.2 – Equilibrium Tensions per Cable vs Number of Cables 

 
 

In terms of the performance metrics when the system was subjected to a wind of 

10 m/s it was found that increasing the number of mainstay cables improves the system’s 

performance by decreasing the error in the focal plane.  By increasing the number of 

cables from 3 to 7 the mmErrorin 8.0−=∆ .  There was no significant change to the error 

out of the focal plane or to the tilt angle. 
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7.3 Tower Radius 
 
 
 Changing the radius of the towers (taken from the centre of the collector dish) is 

essentially one way of also changing the total lengths of the cables.  It was found that 

when increasing the tower radius, the only metric affected was the error in the focal 

plane.  Figure 7.3 shows that for a tower radius increase from 150 m (right at the edge of 

the collector dish) to 270 m, the error in the focal plane is increased by approximately 0.5 

mm.  Each test case is for a constant mean wind of 10 m/s observed over 70 seconds.  Of 

course, this could be looked at in the reverse manner, such that decreasing the tower 

radius would serve to better the performance of the system. 
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Figure 7.3 - Error in the Focal Plane vs Tower Radius 

 

 

 

 

 



 100

7.4 Effective Tower Stiffness 
  

 

In order to evaluate the effect of the tower-top deflection on the performance of 

the system, we vary the effective tower stiffness by incrementing the number of backstay 

cables and recalculating the effective tower stiffness for each case, as per Section 4.3.  

Each test case is for a constant mean wind of 10 m/s at 0° observed over 70 seconds.  The 

following Table 7.3 presents the average effective tower stiffnesses calculated for each 

increment of backstay cable.  For the extreme case of no tower-top motion, we let the 

effective stiffness go to infinity.  Specifically, we use the value mNkeff /100.1 20×=  as 

the infinite condition (any further increase has no effect to the system dynamics).  

 
No. of Backstay 

Cables 
Effective 
Area [m2] 

Average Effective 
Stiffness [N/m] 

0 0.0000 3.458E+05 
1 0.0054 2.946E+06 
3 0.0161 8.146E+06 
5 0.0268 1.335E+03 
7 0.0375 1.855E+07 
9 0.0482 2.375E+07 

Infinite Infinite 1.000E+20 
Table 7.3 Average Tower Effective Stiffness 

 

It is observed that the effective tower stiffness plays a very important role in the 

performance of the system.  Especially concerning the error in the focal plane and the tilt 

angle metrics.  The following figures present the results while indicating the ideal case of 

∞=effk  and zero tower-top deflection.   As the effective tower stiffness is increased the 

error and tilt angle drop rapidly from 0 to 3 backstay cables.  The error then begins to 

asymptote toward the ∞=effk  limit. 
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Figure 7.4a - Error in the Focal Plane vs Number of Backstay Cables 
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Figure 7.4b -Platform Tilt Angle vs Number of Backstay Cables 
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Also of interest is Figure 7.4c which shows the tower-top deflection as a function 

of the number of backstay cables for a wind speed of 10 m/s at 0°. Notice that the tower-

top deflection approaches zero as keff approaches infinity. 
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Figure 7.4c - Average Tower Deflection vs Number of Backstay Cables 

 

 

7.5 Platform Mass 

 
 

One of the most astounding features of the Arecibo Radio Telescope is the mass 

of the suspended platform structure.  At 550 tons in the original Arecibo configuration it 

was later increased to 815 tons in 1997 [2].  With the use of our original Arecibo model 

we will vary the platform mass in order to evaluate what effects it may have on the 

system’s performance.  Recall that in Section 5.3 the platform’s mass moment of inertia 

(used in the rotational equations of motion) was found using CAD software and a 

uniform density triangular shaped section.  In order to perform this sensitivity analysis, 



 103

not only must we change the platform mass, but we must also recalculate the mass 

moments of inertia for each case.  Table 7.4 gives the mass moment of inertia for the 

various platform masses.  Recall that the cross terms are in fact zero due to the symmetry 

of our modeled platform. 

 

Mass Ix Iy Iz 
kg kgm^2 kgm^2 kgm^2 

550000 1.0316E+08 1.0316E+08 1.9866E+08 
815000 1.5277E+08 1.5277E+08 2.9420E+07 
400000 7.5028E+07 7.5028E+07 1.4448E+08 
700000 1.3130E+08 1.3130E+08 2.5284E+08 
850000 1.5925E+08 1.5925E+08 3.0703E+07 

1000000 1.8757E+08 1.8757E+08 3.6121E+07 
Table 7.4 – Platform Mass-Moment of Inertia 

 

Figure 7.5 shows that as the mass of the platform is increased, for the same number of 

cables, the equilibrium height of the platform decreases. 
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Figure 7.5 - Equilibrium Platform Height vs Platform Mass 
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Running the test cases for a wind speed of 10 m/s, a wind direction of 0° and no 

turbulence it was interesting to find that increasing the platform mass had essentially no 

effect on the platform’s positional error.  It did however reduce the platform’s tilt angle 

error as shown in Figure 7.6, which makes sense in terms of an increasing mass-moment 

of inertia.  
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Figure 7.6 – Platform Tilt Angle vs Platform Mass 

 

The following Table 7.5 gives the minimum cable breaking strength of the cables as 

found in the available AutoCAD drawings [14]. 

 

  Mainstay Cables Backstay Cables 
  [in & kips] [m & N] [in & kips] [m & N] 

Total Number of Cables 12 12 5 5 
Diameter of each cable 3 0.0762 3.25 0.08255 

Minimum breaking strength 1044 4.6439E+06 1212 5.3912E+06 
Table 7.5 – Minimum Breaking Strength of Cables 
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According to the original Arecibo model, the minimum breaking strength is 

reached at a platform mass of 1000 tons, giving a tension of approximately N6105.4 ×  

per cable. 

 

7.6 Cable-Platform Attachment Points 
 
 
 
 Next we look to evaluate the effect of moving the cable-platform attachment point 

closer in and further out from the platform’s centre of mass.  The variable radp will be 

used to denote the radial distance at which the mainstay cables are attached to the 

triangular truss platform (see Figure 7.7).  Note that here we are only changing the 

attachment point and not the dimension of the platform itself (as used in the drag model 

and mass moment of inertia calculations).  Changing radp will have a direct effect on the 

moments acting on the platform, and our goal here is to find out how important this 

parameter is to the performance of the Arecibo Radio Telescope. 

 
 
 

 
Figure 7.7 – Cable-Platform Attachment Points 
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Setting up the test runs as per the test matrix in Table 7.1, we obtained some 

interesting results.  Figure 7.8 shows there to be a relatively significant increase to the 

error in the focal plane of the platform with increasing attachment point radius (radp), 

which is obviously not good.  However, Figure 7.9 shows there to be a decrease in the 

average tilt angle with increasing attachment point radius.  Thus, the optimal attachment 

point distance would require some sort of compromise between the performance metrics.  

Also, there was no significant change to the error out of the focal plane with increasing 

attachment point radius. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70
Attachment Point Radius (m)

Er
ro

r i
n 

th
e 

Fo
ca

l P
la

ne
 (m

m
)

Avg
RMS
Peak

 
Figure 7.8 - Error in the Focal Plane vs Platform-Cable Attachment Radius 
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Figure 7.9 - Platform Tilt Angle vs Platform-Cable Attachment Radius 

 

7.7  Mainstay Cable Properties: Plasma Rope 

 

 

 The final parameter of our sensitivity analysis satisfied our curiosity regarding the 

use of a completely different type of mainstay cable.  We chose to replace the braided 

steel cables with the so-called “plasma rope” that is being used for the LAR system.  The 

main advantage of plasma rope is that it is the “world’s strongest rope for its weight” 

[26].  Presumably, a light weight material has no particular advantage in the Arecibo 

system in improving its performance, so it was interesting to investigate the feasibility of 

using Plasma rope for the Arecibo mainstay cables.  Table 7.6 gives the cable properties 

used for plasma rope in this analysis [26]. 
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Plasma Rope 
Property Symbol Value Units 
Density ρ 840 kg/m3 

Elastic Modulus E 37.4 GPa 
Damping Ratio ζ 0.015   

Table 7.6 – Plasma Rope Properties 

 

 The choice of the effective area to be used for the plasma rope was next 

considered.  It was decided to use an effective area of the plasma rope that would give the 

plasma cables the equivalent stiffness as the braided steel mainstay cables: 

 plasmaeffsteeleff EAEA )()( =   (7.1) 

 

2

9

311

01219.0
104.37

)1056.4)(100.1(

)(

m

E
EA

A
plasma

seeeleff
plasmaeff

=
×

××=

=

−

   

This effective area may be realized by employing six, 2 inch tethers 

)01216.0( 2mAeff = per tower or even three, 3 inch tethers )01368.0( 2mAeff =  per tower. 

Finally to ensure that the plasma cables have enough strength to carry the load we 

perform a rough strength calculation: 

 kN
gm

T o
p

total 950.25
)12sin(

)81.9(550000
sin

===
θ

  (7.2) 

kNTT total
cableper 441.1

63
=

×
=  

Where mp is the mass of the platform, g is the gravitational constant, and θ  is the 

approximate angle of the cables at the cable-platform attachment.  The tension per plasma 

cable is found to be approximately 1.441 kN which is under (but close to) the minimum 

tensile strength of 1.579 kN for a 2 inch stand [26].  

 

Figure 7.10a shows that average error in the focal plane over a range of wind 

speeds is significantly higher when using plasma rope.   
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Figure 7.10 a – Average Error in the Focal Plane vs. Wind Speed for Plasma Rope 

 

The same is true for the remaining performance metrics as is shown in the following 

figures.  Therefore, we can conclude that using plasma rope for the Arecibo Radio 

Telescope degrades the system’s performance. 
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Figure 7.10b – Average Error out the Focal Plane vs. Wind Speed for Plasma Rope 
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Figure 7.10c – Tilt Angle vs. Wind Speed for Plasma Rope 
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7.7 Summary 

 
Having successfully completed a sensitivity analysis on the original Arecibo 

model, we present the Table 7.7 that qualitatively summarizes the results of the 

investigation.  It should be kept in mind that these results are for a wind speed of 10 m/s 

and a wind direction of 0°, with no turbulence (except for the case of the Plasma Rope 

which was tested over range of wind speeds).  Also note that the general trends presented 

in this section are for the average values of the performance metrics observed over a time 

of 70 seconds. 

 

Variable Error In FP Error Out FP Tilt Angle Tension 
Tower-

Top 
Deflection

Increase No. 
of Main 
Cables 

Decreases Constant Decreases 
Tension per 

cable 
decreases 

Constant 

Increase 
Tower Radius 
(cable length) 

Increases  Constant Constant Increases Constant 

Increase 
Platform Mass Constant Constant Decreases Increases Constant 

Increase 
Tower 

Stiffness 
(No.of bacstay 

cables) 

Decreases 
significantly  Constant Decreases 

significantly 

Mainstay 
cable tension 

increases 
Decreases

Increase 
Cable-

Platform 
Attachment 

Radius 

Increases  Constant Decreases Decreases Constant 

Using Plasma 
Rope Increases Increases Increases Decreases Constant 

 

Table 7.7 – Qualitative Summary of Sensitivity Analysis 
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Chapter 8 – Conclusions 
 
 

8.1 Final Remarks 
 
 

In summary, a basic model for the dynamics of the Arecibo Radio Telescope has 

been developed.  The development of the model successfully stemmed from an earlier 

version of a dynamics model of the LAR system [6].  Upon developing the model, a 

successful performance evaluation and sensitivity analysis was carried out.  The 

following is a list of the key conclusions that were drawn from the performance 

evaluation: 

 
• The original Arecibo model, even at very high wind speeds, is subject to 

motion on the order of tens of millimeters.   

• The tilt angle is also very small, even at high wind speeds: approximately 

0.02° (or rad4105.3 −× ) at a wind speed of 20 m/s.   

• The peak tower deflection, even at the hurricane wind speed of 30 m/s, was 

found to be very small (6.2 mm), which is well within the permissible limit of 

2 inches, or 50.8 mm [13] for the tower-top deflection. 

• Wind direction has negligible effect on the performance of the system 

• Turbulent wind, particularly at mean wind speeds in excess of 10 m/s, has the 

effect of increasing the average and peak performance metrics, thus degrading 

the system’s performance.  However the system’s motion, even under 

turbulent conditions, is still on the order of centimeters. 

• The recent design changes (studied in the context of these models) were in 

fact beneficial to the system’s performance. 
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From the information gathered in the sensitivity analysis, the following final 

remarks address the question:  What general trends or changes to the physical 

construction of the Arecibo Radio Telescope would improve the system’s performance? 

 

• Increasing the number of mainstay cables  

• Decreasing the tower radius  

• Increasing the effective tower stiffness (i.e. the number of backstay cables)  

• Increasing the platform’s mass  

 

8.2 Recommendations for Future Work 

 
 
 The advantage of computer modeling is once again demonstrated in this section. 

Upon development of a basic model, such as the Arecibo model, there is always room for 

improvement and added features.  The key target areas of the model which should be 

considered in future development are: 

 

• Tiedown Cables: A large effort was in fact put forward in trying to implement the 

tie down cables (specifically the vertical tiedowns for the upgraded Arecibo 

configuration).  Unfortunately, time was a limiting factor and it was decided that 

the tie downs were beyond the scope of this thesis.  For this reason, the next 

feature that should be added to the basic Arecibo model is the tie down cables.  

There are two possible approaches: 

o Develop a code that introduces 3 new cables that are self-contained.  

o Set the number of cables in the existing code to 6, with different base 

point specifications for the mainstay and tiedown cables. 

In either case a new method for determining the unstretched length of the 

tiedowns must be devised.  Finally, it should be noted that the vertical tiedowns of 

the upgraded Arecibo and the off vertical catenaries of the original Arecibo 

present the same challenges or problems in terms of model development.  When 

one problem is solved, the other follows. 
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• Gregorian Positioning:  Devise a feature, either in the dynamics model itself or 

offline, to take into account the different zenith and azimuth angles that the 

Gregorian system may take.  To do this, the mass-moment of inertia of the 

platform may no longer be assumed as a uniform density triangular section that 

includes the mass of the Gregorian.  Also, the drag of the Gregorian should no 

longer be taken at the centre of mass of the platform (this will introduce a moment 

force acting on the platform due to its own drag). 

• Platform Drag Model:  Improvements to the triangular truss platform drag model 

should be a goal of future development.  The drag through multiple truss frame 

sections (i.e. more than a pair) should be researched and the platform drag 

coefficients should be improved. 
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